Structures and Photoluminescence Properties of Four Cadmium(ii) Coordination Polymers Synthesized by Rigid Ligands and N-Donor Ligands
Qing-Guo Meng A B , Lin-Tong Wang A , Ji-Tao Lu A , Xin Wang A , Wei Lu A and Zi-Yu Song AA Chemistry & Chemical and Environmental Engineering College, Weifang University, Weifang Shandong 261061, China.
B Corresponding author. Email: mengqg@wfu.edu.cn
Australian Journal of Chemistry 68(5) 742-748 https://doi.org/10.1071/CH14341
Submitted: 28 May 2014 Accepted: 17 July 2014 Published: 6 October 2014
Abstract
Four metal–organic coordination polymers, [Cd2(dna)2(2,2′-bpy)2]n (1), {[Cd4(dna)4(im)3]·5H2O}n (2), {[Cd2(dna)2(4,4′-bpy)(H2O)2]·2EtOH}n (3), and {[Cd4(dna)4(1,3-dpp)4(H2O)4]·2H2O}n (4) (H2dna = 4,6-dimethyl-5-nitroisophthalic acid; 2,2′-bpy = 2,2′-bipyridine; im = imidazole; 4,4′-bpy = 4,4′-bipyridine; 1,3-dpp = 1,3-di(4-pyridyl)propane; and EtOH = ethanol, have been solvothermally synthesized and characterized. Compound 1 displays a one-dimensional (1D) ladder structure and the neighbouring ladders are further stabilized by π···π interactions to form a two-dimensional (2D) layer. Compound 2 forms a 2D layer based on infinite 1D [Cd2(COO)4]n chain and the im ligands act as terminal ligands, preventing expansion of the dimensionality. Compound 3 features a 2D 44-sql layer based on binuclear [Cd2(COO)4] secondary building units as 4-connected nodes, and is further linked to be an unusual three-dimensional (3D) supramolecular architecture by hydrogen bonds involving the coordinated water molecules, carboxylate groups, and lattice ethanol molecules. Compound 4 possesses a 2-fold interpenetrated dia net. The diverse structures and topologies of compounds 1–4 indicate that the N-containing ligands have significant effects on the formation of the final network structures. In addition, the thermal stabilities, structure comparison, and photoluminescence properties of the complexes have been investigated.
References
[1] (a) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed. 2004, 43, 2334.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=2b09f2dc3db906fcf0692931b689a0e9CAS |
(b) D. Zhao, D. J. Timmons, D. Yuan, H. Zhou, Accounts Chem. Res. 2011, 44, 123.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. J. Perry, J. A. Perman, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Hong, Y. Zhao, W. Su, R. Cao, M. Fujita, Z. Zhou, A. S. C. Chan, Angew. Chem., Int. Ed. 2000, 39, 2468.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. R. Batten, R. Robson, Angew. Chem., Int. Ed. 1998, 37, 1460.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. Zhang, X. Chen, J. Am. Chem. Soc. 2009, 131, 5516.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) F. Dai, H. He, D. Gao, F. Ye, X. Qiu, D. Sun, CrystEngComm 2009, 11, 2516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVShu7%2FK&md5=781c59f7a35b5dc945fe6aad592c4119CAS |
(b) D. Sun, D. F. Wang, X. G. Han, N. Zhang, R. B. Huang, L. S. Zheng, Chem. Commun. 2011, 47, 746.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Fan, L. Gan, H. Kawaguchi, W. Y. Sun, K. B. Yu, W. X. Tang, Chem. – Eur. J. 2003, 9, 3965.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Cui, L. J. Lee, W. B. Lin, J. Am. Chem. Soc. 2003, 125, 6014.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. M. P. Peedikakkal, J. Vittal, Cryst. Growth Des. 2008, 8, 375.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Qi, Y. X. Che, S. R. Batten, J. M. Zheng, CrystEngComm 2008, 10, 1027.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. Sun, G. G. Luo, Q. J. Xu, N. Zhang, Y. C. Jin, H. X. Zhao, L. R. Lin, R. B. Huang, L. S. Zheng, Inorg. Chem. Commun. 2009, 12, 782.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. A. S. Goher, Q. C. Yang, T. C. W. Mak, Polyhedron 2000, 19, 615.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, J. Am. Chem. Soc. 2004, 126, 6106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVCiu78%3D&md5=b836171489cb92fcd7f649fae6486c2aCAS | 15137776PubMed |
(b) X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, C. W. Hu, Angew. Chem., Int. Ed. 2004, 43, 5036.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Qi, F. Luo, S. R. Batten, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2008, 8, 2806.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. S. Chen, Z. H. Chen, J. Fan, T. Okamura, Z. S. Bai, M. F. Lv, W. Y. Sun, Cryst. Growth Des. 2012, 12, 2315.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Guo, D. Sun, L. Zhang, Q. Yang, X. Zhao, D. Sun, Cryst. Growth Des. 2012, 12, 5649.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Koh, A. G. Wong Foy, A. J. Matzger, Angew. Chem., Int. Ed. 2008, 47, 677.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) K. Koh, A. G. Wong-Foy, A. J. Matzger, Chem. Commun. 2009, 6162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ggt7fK&md5=bbe6215e71d828c99cb0c4cfe1f1e3ccCAS |
(b) T. H. Park, J. H. Amanda, K. Koh, S. Martin, S. S. Melanie, J. M. Adam, J. Am. Chem. Soc. 2011, 133, 20138.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Y. Lee, C. Y. Chen, H. M. Lee, E. Passaglia, F. Vizza, W. Oberhauser, Cryst. Growth Des. 2011, 11, 1230.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Sun, N. Zhang, R. B. Huang, L. S. Zheng, Cryst. Growth Des. 2010, 10, 3699.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. H. Ye, M. L. Tong, X. M. Chen, Coord. Chem. Rev. 2005, 249, 545.
| Crossref | GoogleScholarGoogle Scholar |
(f) Z. j. Lin, M. L. Tong, Coord. Chem. Rev. 2011, 255, 421.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) K. Koh, A. G. Wong-Foy, A. J. Matzger, Angew. Chem., Int. Ed. 2008, 47, 677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslamt7c%3D&md5=db74172db10ae513c14fa9f1f6711e99CAS |
(b) K. Seki, Chem. Commun. 2001, 1496.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. S. Zhou, F. K. Wang, S. Y. Yang, Z. X. Xie, R. B. Huang, CrystEngComm 2009, 11, 2548.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. M. Li, S. Y. Yang, J. W. Wang, L. S. Long, R. B. Huang, L. S. Zheng, Polyhedron 2010, 29, 2851.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. L. Pochodylo, R. L. LaDuca, CrystEngComm 2011, 13, 2249.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. L. Pochodylo, R. L. LaDuca, Z. Anorg. Allg. Chem. 2010, 636, 2568.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) T. Ni, F. Xing, M. Shao, Y. Zhao, S. Zhu, M. Li, Cryst. Growth Des. 2011, 11, 2999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlylurg%3D&md5=2c679cc6632a940af6ad1d8e8c0e957dCAS |
(b) L. L. Liang, S. B. Ren, J. Zhang, Y. Z. Li, H. B. Du, X. Z. You, Dalton Trans. 2010, 39, 7723.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. G. Meng, Y. L. Song, H. W. Hou, H. Y. Han, B. Xiao, Y. T. Fan, Y. Zhu, Inorg. Chem. 2004, 43, 3528.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Sun, Q. J. Xu, C. Y. Ma, N. Zhang, R. B. Huang, L. S. Zheng, CrystEngComm 2010, 12, 4161.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. A. Habib, A. Hoffmann, H. A. Hoppe, C. Janiak, Dalton Trans. 2009, 1742.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. O. H. Gutschke, M. Molinier, A. K. Powell, R. E. P. Winpenny, P. T. Wood, Chem. Commun. 1996, 7, 823.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z. Wang, K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2009, 48, 296.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. M. Sheldrick, SADABS 1996 (University of Göttingen: Germany).
[9] G. M. Sheldrick, SHELXS-97, Program for X-Ray Crystal Structure Determination 1997 (University of Göttingen: Germany).
[10] G. M. Sheldrick, SHELXL-97, Program for X-Ray Crystal Structure Refinement 1997 (University of Gottingen: Germany).
[11] J. Hu, L. Huang, X. Yao, L. Qin, Y. Li, Z. Guo, H. Zheng, Z. Xue, Inorg. Chem. 2011, 50, 2404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ahsbY%3D&md5=71872ab2a2ea0dd3a56a89a38f287b20CAS | 21302915PubMed |
[12] Q. Guo, C. Xu, B. Zhao, Y. Jia, H. Hou, Cryst. Growth Des. 2012, 12, 5439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksb%2FI&md5=64113c0ae176dc7182c11535f5e4867cCAS |
[13] M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, Accounts Chem. Res. 2008, 41, 1782.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SgsrjF&md5=f311f4a19a7af72d49b64977272e3cf1CAS |
[14] S. Hu, H. H. Zou, M. H. Zeng, Q. X. Wang, H. Liang, Cryst. Growth Des. 2008, 8, 2346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGqs7c%3D&md5=e4c8a128a148afe7435a50738d638cefCAS |
[15] (a) L. Carlucci, G. Ciani, D. M. Proserpio, CrystEngComm 2003, 5, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFKjs7Y%3D&md5=39220e6763233bb318a4e842a81cfa4bCAS |
(b) S. Bureekaew, H. Sato, R. Matsuda, Y. Kubota, R. Hirose, J. Kim, K. Kato, M. Takata, S. Kitagawa, Angew. Chem., Int. Ed. 2010, 49, 7660.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) R. F. Jin, S. Y. Yang, H. M. Li, L. S. Long, R. B. Huang, L. S. Zheng, CrystEngComm 2012, 14, 1301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wmtbs%3D&md5=7c6073c0cd0c2615bc6fbb71a5075a07CAS |
(b) X. L. Deng, S. Y. Yang, R. F. Jin, J. Tao, C. Q. Wu, Z. L. Li, L. S. Long, R. B. Huang, L. S. Zheng, Polyhedron 2013, 50, 219.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamurg%3D&md5=709aaa8e03b2050caa70ec2b9766f9d1CAS | 19384441PubMed |