Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Asymmetric Michael Addition Using Bifunctional Bicyclic Guanidine Organocatalyst: A Theoretical Perspective

Ming Wah Wong A B and Aik Meng Eugene Ng A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

B Corresponding author. Email: chmwmw@nus.edu.sg

Australian Journal of Chemistry 67(7) 1100-1109 https://doi.org/10.1071/CH14340
Submitted: 27 May 2014  Accepted: 13 June 2014   Published: 1 July 2014

Abstract

To illustrate the general principle of asymmetric organocatalysis of chiral bicyclic guanidine, a density functional theory study was carried out to examine the catalytic mechanism, activation mode, origin of stereoselectivity of a [5,5]-bicyclic guanidine-catalyzed Michael addition of dimethyl malonate to 2-cyclopenten-1-one. Two types of bifunctional activation modes were examined: Brønsted acid and Brønsted-Lewis acid. The calculated enantioselectivity (ee), based on eight C–C bond forming transition states and their pre-transition state complexes, is in excellent accord with experimental result. The ternary pre-transition state complexes are stable species, which strongly influence the stereoselectivity. Similar to enzyme catalysis, the bicyclic guanidinium catalyst plays an essential recognition role in assembling the substrates together via hydrogen bonds, multiple C–H···O interactions (as oxyanion hole), donor–acceptor, and electrostatic interactions.


References

[1]  (a) C. Palomo, M. Oiarbide, R. Lopez, Chem. Soc. Rev. 2009, 38, 632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntbY%3D&md5=b99e5ccbffade031c91cc7399b119c97CAS | 19169469PubMed |
      (b) A. Ting, J. M. Goss, N. T. McDougal, S. E. Schaus, Top. Curr. Chem. 2009, 291, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For recent reviews on chiral guanidine catalysts, see: P. Selig, Synthesis 2013, 45, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotV2htL4%3D&md5=fc2668574b0bcda0e2c848c2859201caCAS |
      (b) D. Leow, C.-H. Tan, Chem. – Asian J. 2009, 4, 488.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Ishikawa, T. Kumamoto, Synthesis 2006, 737.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  For a mechanistic review, see X. Fu, C.-H. Tan, Chem. Commun. 2011, 47, 8210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslWqsbo%3D&md5=be4b069c8c2af50cef7997feac01743eCAS |

[4]  (a) B. Kovacevic, Z. B. Maksic, Org. Lett. 2001, 3, 1523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislKlsb4%3D&md5=de05936bdad4db35b4b14a6601b1bae4CAS | 11388857PubMed |
      (b) I. Kaljurand, T. Rodima, A. Pihl, V. Maemets, I. Leito, I. A. Koppel, M. Mishima, J. Org. Chem. 2003, 68, 9988.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1aqtLo%3D&md5=7e104089e8e2c2980c921b2e49d0226bCAS | 10822552PubMed |

[6]  (a) J. Li, W.-Y. Jiang, K.-L. Han, G.-Z. He, C. Li, J. Org. Chem. 2003, 68, 8786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Ojs7o%3D&md5=e961d0c016094937c3de93aee1cea833CAS | 14604345PubMed |
      (b) R. Lee, X. Lim, T. Chen, G. K. Tan, C.-H. Tan, K.-W. Huang, Tetrahedron Lett. 2009, 50, 1560.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Z. Jiang, Y. Pan, Y. Zhao, T. Ma, R. Lee, Y. Yang, K. W. Huang, M. W. Wong, C.-H. Tan, Angew. Chem. Int. Ed. 2009, 48, 3627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKgtLw%3D&md5=a9eac1958be77851bf429408c7ff4da4CAS |

[8]  B. Cho, C.-H. Tan, M. W. Wong, Org. Biomol. Chem. 2011, 9, 4550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGgtLY%3D&md5=d1c821a47b473aee030688f6f8db2958CAS | 21509383PubMed |

[9]  B. Cho, C.-H. Tan, M. W. Wong, J. Org. Chem. 2012, 77, 6553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVejtb3N&md5=c2f0d8e36df996066ee42c6a43f89e62CAS | 22788383PubMed |

[10]  Z. Jiang, W. Ye, Y. Xang, C.-T. Tan, C.-H. Tan, Adv. Synth. Catal. 2008, 350, 2345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOjs7rM&md5=0d84396d7cc7ab54831781f63581e095CAS |

[11]  W. Ye, J. Xu, C.-T. Tan, C.-H. Tan, Tetrahedron Lett. 2005, 46, 6875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFyktbg%3D&md5=6e85b16ba7b992b78ca757bec4a6303fCAS |

[12]  (a) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=78694ab799c17471eb4f1547406dfe71CAS |
      (b) Y. Zhao, D. G. Truhlar, Accounts Chem. Res. 2008, 41, 157.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) H. Yang, M. W. Wong, J. Am. Chem. Soc. 2013, 135, 5808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFSkurk%3D&md5=3146860402a4ab71d799a076f32ceeafCAS | 23517148PubMed |
      (b) H. Yang, M. W. Wong, J. Org. Chem. 2011, 76, 7399.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=b322b0fff21ba5ddb7cbe0a3d5b09758CAS | 19366259PubMed |

[15]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=52299b0d9e8f1e932b8760cc4ffafdffCAS |

[16]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision A.2) 2009 (Gaussian, Inc.: Wallingford, CT).

[17]  G. Garrido, E. Koort, C. Rafols, E. Bosch, T. Rodima, I. Leito, M. Roses, J. Org. Chem. 2006, 71, 9062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFelt7zL&md5=4d919604ef2515a66b3086bc8d73bdedCAS | 17109531PubMed |

[18]  E. D. Raczyńska, M. K. Cyrański, M. Gutowski, J. Rak, J.-F. Gal, P.-C. Maria, M. Darowska, K. Duczmal, J. Phys. Org. Chem. 2003, 16, 91.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) J.-F. Briere, S. Oudeyer, V. Dalla, V. Levacher, Chem. Soc. Rev. 2012, 41, 1696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFyjsrw%3D&md5=7249f5fd050a0922cf13de80b292e1a2CAS | 22045014PubMed |
      (b) M. Rueping, B. J. Nachtsheim, R. M. Koenigs, W. Ieawsuwan, Chem. – Eur. J 2010, 16, 13116.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Lacour, D. Moraleda, Chem. Commun. 2009, 7073.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. Bondi, J. Phys. Chem. 1964, 68, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=116107986ca72c813bccbb0748675625CAS |

[21]  M. P. Coles, Chem. Commun. 2009, 3659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslentLw%3D&md5=0bef196c004b3565f30822ca276ed1f9CAS |

[22]  (a) K. A. Schug, W. Lindner, Chem. Rev. 2005, 105, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKktbjL&md5=670abeeae9c8832a312fe94ae06c81e5CAS | 15720152PubMed |
      (b) P. Blondeau, M. Segura, R. Perez-Fernandez, J. de Mendoza, Chem. Soc. Rev. 2007, 36, 198.
         | Crossref | GoogleScholarGoogle Scholar |