Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microwave-Assisted Synthesis of a Series of Ag/ZnO Nanocomposites and Evaluation of Their Photocatalytic Activities under Multi-Mode Photodegradation

Li Li A C D , Xiandan Huang B , Yu Gao B , Wenzhi Zhang B , Xiuli Zhang B and Xi Chen B
+ Author Affiliations
- Author Affiliations

A College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.

B Faculty of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.

C Key Laboratory of Composite Modified Material of Colleges in Heilongjang Provence, Qiqihar 161006, China.

D Corresponding author. Email: qqhrll@163.com

Australian Journal of Chemistry 68(5) 774-782 https://doi.org/10.1071/CH14293
Submitted: 13 May 2014  Accepted: 2 August 2014   Published: 3 November 2014

Abstract

A series of Ag/ZnO nanocomposites were prepared under microwave irradiation of different powers (100, 200, and 300 W). The crystal structure, morphology, and surface physicochemical properties of the as-synthesized samples were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, scanning electron microscopy, and nitrogen adsorption–desorption analyses. Compared with the Ag/ZnO prepared by conventional sedimentation process, the crystal structures of Ag and ZnO did not exhibit any transformation after microwave irradiation; however, slight increases or decreases were observed in their absorption spectra and the specific surface areas. Moreover, the morphologies of all Ag/ZnO samples were changed dramatically by microwave irradiation, showing morphologies such as octagonal nano-pyramidal and multi-angled nano-pyramidal. The multi-mode photocatalytic degradation studies showed that the photocatalytic activities of the Ag/ZnO nanocomposites prepared under microwave irradiation of different powers were enhanced to different extents and were much higher than that of P25, ZnO, and Ag/ZnO prepared in the absence of microwave irradiation.


References

[1]  L. C. Liu, Z. Y. Ji, W. X. Zou, X. R. Gu, Y. Deng, F. Gao, C. J. Tang, L. Dong, ACS Catal. 2013, 3, 2052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOlsbfL&md5=4b5c6cf1b6d1a5265e608b432300c800CAS |

[2]  S. G. Cho, J. W. Jang, S. H. Jung, B. R. Lee, E. Oh, K. H. Lee, Langmuir 2009, 25, 3825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslCjtL4%3D&md5=3952fb6303cf5322cd3450fe271b3005CAS |

[3]  C. D. Gu, C. Cheng, H. Y. Huang, T. L. Wong, N. Wang, T. Y. Zhang, Cryst. Growth Des. 2009, 9, 3278.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2ktL0%3D&md5=92a501abde4fad111d68b752eabf0a98CAS |

[4]  G. K. Zhang, X. Shen, Y. Q. Yang, J. Phys. Chem. C 2011, 115, 7145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFart74%3D&md5=92a8ec413cba86ca82ffa684f013312dCAS |

[5]  R. Georgekutty, M. K. Seery, S. C. Pillai, J. Phys. Chem. C 2008, 112, 13563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslahtLc%3D&md5=e02d203b8df1ec2a7ba67574083f32f7CAS |

[6]  H. Z. Chen, S. G. Yang, K. Yu, Y. M. Ju, J. Phys. Chem. A 2011, 115, 3034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVeisbg%3D&md5=c18291b5fbfec4c57e4a9cba8d5424f2CAS |

[7]  J. G. Yu, X. X. Yu, Environ. Sci. Technol. 2008, 42, 4902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKhs7w%3D&md5=ae79e3f0f3fcac182744bc2f4d6c28c0CAS |

[8]  R. Kozhummal, Y. Yang, F. Guder, A. Hartel, X. L. Lu, U. M. Kucukbayrak, M. A. Aurelio, M. Elwenspoek, M. Zacharias, ACS Nano 2012, 6, 7133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhsLfL&md5=6f1545f7365ef9ea943f73dfcf2e5088CAS | 22849328PubMed |

[9]  H. X. Guo, H. Y. Jia, J. B. Zeng, Q. Gong, L. Q. Ren, Chem. Res. Chin. Univ. 2013, 29, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGmu7rN&md5=7950cd4c58c07780ca3206e0530a2343CAS |

[10]  P. V. Kamat, J. Phys. Chem. B 2002, 106, 7729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlCntLg%3D&md5=03466fd0c1c7ee899307cf5b0cb371eaCAS |

[11]  M. D. L. Ruiz Peralta, U. Pal, R. Sanchez Zeferino, ACS Appl. Mater. Interfaces 2012, 4, 4807.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12is7jO&md5=4acfaf119d5ac9a1f233a35c661ecb3cCAS |

[12]  H. H. Ou, S. L. Lo, C. H. Liao, J. Phys. Chem. C 2011, 115, 4000.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Wjsbo%3D&md5=cf74917ec688fdb257b9d9d6bd55f408CAS |

[13]  N. P. Herring, K. A. Zeid, M. B. Mohamed, J. Pinsk, M. S. El-Shall, Langmuir 2011, 27, 15146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVemu7zE&md5=65b1f11caf8115c14836b5eb94f3839fCAS | 21819068PubMed |

[14]  V. P. Pakharukova, E. M. Moroz, D. A. Zyuzin, V. I. Zaikovskii, F. V. Tuzikov, G. R. Kosmambetova, P. E. Strizhak, J. Phys. Chem. C 2012, 116, 9762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFWgur4%3D&md5=9602894101b9d80903abc7bcadac83dcCAS |

[15]  C. Karunakaran, V. Rajeswari, P. Gomathisankar, Solid State Sci. 2011, 13, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFChuro%3D&md5=f20bb239153b2d9fecce8b51389b496bCAS |

[16]  P. Bazant, I. Kuritka, O. Hudecek, M. Machovsky, M. Mrlik, T. Sedlacek, Polymer Composites 2014, 35, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1OhsrzE&md5=a3b081abf4acd101d4ff5def4d3fe95fCAS |

[17]  F. Z. Sun, X. L. Qiao, F. T. Tan, W. Wang, X. L. Qiu, J. Mater. Sci. 2012, 47, 7262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlSjt7o%3D&md5=f965755c193f177657862f8c5ef8e4feCAS |

[18]  Y. Hu, Y. Lin, H. S. Qian, Z. Q. Li, J. F. Chen, Langmuir 2010, 26, 18570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjsL%2FF&md5=baeb5c10e009af0bb4f6c9eb1d87d435CAS | 21033732PubMed |

[19]  G. Yang, Y. Kong, W. H. Hou, Q. J. Yan, J. Phys. Chem. B 2005, 109, 1371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVWh&md5=a00ba8762ea6defcbc670bd7f2cd97ebCAS | 16851105PubMed |

[20]  X. Liu, Z. J. Zhou, B. S. Zhang, L. Chen, F. C. Wang, Ind. Eng. Chem. Res. 2011, 50, 9063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFyrtL8%3D&md5=9e30190874009a0ae4bf7b65226169cfCAS |

[21]  B. Hu, S. Bing Wang, K. Wang, M. Zhang, S. H. Yu, J. Phys. Chem. C 2008, 112, 11169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVCltbo%3D&md5=50e5bf79cbf615fe514cc9ee042bd2d0CAS |

[22]  M. Nishioka, M. Miyakawa, H. Kataoka, H. Koda, K. Sato, T. M. Suzuki, Chem. Lett. 2011, 40, 1204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeqtLfM&md5=ab59d26d6b6ae46b3ead7bbbb5616d33CAS |

[23]  M. A. Thomas, W. W. Sun, J. B. Cui, J. Phys. Chem. C 2012, 116, 6383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xislakurk%3D&md5=ae7d6cd5e5e4a095e27b40af6435b09fCAS |

[24]  C. R. Gamez, E. T. Castellana, D. H. Russell, Langmuir 2013, 29, 6502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFWlu7o%3D&md5=ad28f7bbd648ba3e2516d0dc164a02b9CAS |

[25]  R. Koirala, K. R. Gunugunuri, S. E. Pratsinis, P. G. Smirniotis, J. Phys. Chem. C 2011, 115, 24804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCrsLbP&md5=bf78fcc2aca59891fb1c11a1954df931CAS |

[26]  A. Budi, A. Basile, G. Opletal, A. F. Hollenkamp, A. S. Best, R. J. Rees, A. I. Bhatt, A. P. O’Mullane, S. P. Russo, J. Phys. Chem. C 2012, 116, 19789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1eksL3M&md5=173f7d01b2dcd211d8e114ade8bb9664CAS |

[27]  D. Q. Yang, E. Sacher, Chem. Mater. 2006, 18, 1811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVymsr0%3D&md5=e818154df668df0922283acee3146fcbCAS |

[28]  S. L. Shen, J. Zhuang, X. X. Xu, A. Nisar, S. Hu, X. Wang, Inorg. Chem. 2009, 48, 5117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKlsbk%3D&md5=f601ddaa025e00ef2e5688ccd3ed2711CAS |

[29]  X. F. Yang, H. Y. Cui, Y. Li, J. L. Qin, R. X. Zhang, H. Tang, ACS Catal. 2013, 3, 363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCgur0%3D&md5=f11f051050ff4072dd83fa70028e614eCAS |

[30]  H. Y. Jiang, J. J. Liu, K. Cheng, W. B. Sun, J. Lin, J. Phys. Chem. C 2013, 117, 20029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjsrbI&md5=32ebac63e18261d32a1c916c1fc4f78bCAS |

[31]  L. Q. Ye, J. Y. Liu, C. Q. Gong, L. H. Tian, T. Y. Peng, L. Zan, ACS Catal. 2012, 2, 1677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1GjsLw%3D&md5=57cedc0443b5234d84bef33a3e81be50CAS |

[32]  L. Li, Y. Ma, Y. Z. Cao, Y. Ji, Y. H. Guo, Acta Phys.-Chim. Sin. 2009, 25, 1461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2hu7s%3D&md5=3a95cad331a8d0766b36dfb6a0d581e2CAS |