A Novel Approach to the Functionalisation of Pristine Carbon Fibre Using Azomethine 1,3-Dipolar Cycloaddition
Linden Servinis A , Thomas R. Gengenbach B , Mickey G. Huson C , Luke C. Henderson A D and Bronwyn L. Fox AA Deakin University, Institute for Frontier Materials, Pigdons Road, Waurn Ponds Campus, Geelong, Vic. 3216, Australia.
B CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Vic. 3168, Australia.
C CSIRO Materials Science and Engineering, Waurn Ponds, Geelong, Vic. 3216, Australia.
D Corresponding author. Email: luke.henderson@deakin.edu.au
Australian Journal of Chemistry 68(2) 335-344 https://doi.org/10.1071/CH14254
Submitted: 23 April 2014 Accepted: 10 May 2014 Published: 14 July 2014
Abstract
We demonstrate the utilisation of an azomethine 1,3-dipolar cycloaddition reaction with carbon fibre to graft complex molecules onto the fibre surface. In an effort to enhance the interfacial interaction of the fibre to the matrix, the functionalised fibres possessed a pendant amine that is able to interact with epoxy resins. Functionalisation was supported by X-ray photoelectron spectroscopy and the grafting process had no detrimental effects on tensile strength compared with the control (untreated) fibres. Also, microscopic roughness (as determined by atomic force microscopy) and fibre topography were unchanged after the described treatment process. This methodology complements existing methodology aimed at enhancing the surface of carbon fibres for advanced material applications while not compromising the desirable strength profile. Single-fibre fragmentation tests show a statistically significant decrease in fragment length compared with the control fibres in addition to transverse cracking within the curing resin, both of which indicate an enhanced interaction between fibre and resin.
References
[1] I. K. Ismail, M. D. Vangsness, Carbon 1988, 26, 749.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslWgu7o%3D&md5=1837b4ae42db63dd0303e8101e79a1dfCAS |
[2] S. D. Fedoseev, T. V. Komarova, A. K. Zakharov, Fibre Chem. 1977, 8, 597.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. R. Piggott, Carbon 1989, 27, 657.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. E. Standage, R. Matkowsky, Nature 1969, 224, 688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXit1Crug%3D%3D&md5=5b73aaf8beafa658dbfaa55a55f1517aCAS |
[5] A. E. Standage, R. D. Matkowsky, Eur. Polym. J. 1971, 7, 775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsFahur0%3D&md5=f900391c01edc0d994dacff6a5ceff53CAS |
[6] J. M. Whitney, Analysis of the Test Methods for High Modulus Fibres and Composites 1972 (American Society for Testing and Materials: San Antonio, TX).
[7] E. Fitzer, R. Weiss, Carbon 1982, 20, 149.
[8] J. D. H. Hughes, H. Morley, E. E. Jackson, J. Phys. D Appl. Phys. 1980, 13, 921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvVOlsLY%3D&md5=dda2748b44c3bcb16e5071d59c8a4892CAS |
[9] D. C. Davis, J. W. Wilkerson, J. Zhu, V. G. Hadjiev, Compos. Sci. Technol. 2011, 71, 1089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFWntr0%3D&md5=14ad81926c10c34258484610199b6dc2CAS |
[10] F. Severini, L. Formaro, M. Pegoraro, L. Posca, Carbon 2002, 40, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xitlalsbk%3D&md5=adb825e26d17820659692f026e30ab0aCAS |
[11] S.-J. Park, B.-J. Park, J. Mater. Sci. Lett. 1999, 18, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslCgs78%3D&md5=60a0339f52028ee28a688264368a0b7dCAS |
[12] Z. Dai, F. Shi, B. Zhang, M. Li, Z. Zhang, Appl. Surf. Sci. 2011, 257, 6980.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKjsb0%3D&md5=59cee68f868ee3f793c47c5101b4b432CAS |
[13] D. D. Edie, Carbon 1998, 36, 345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlWkur8%3D&md5=2d442d0e27db067efb002993cfe1e4baCAS |
[14] F. R. Jones, J. Adhes. Sci. Technol. 2010, 24, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFCitLg%3D&md5=35fe5af06e5c7447deaf32315987b81dCAS |
[15] M. D. Gilchrist, N. Svensson, Compos. Sci. Technol. 1995, 55, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtV2lug%3D%3D&md5=bbf7999bbaa96f674349b34a2c253c16CAS |
[16] B. W. Kim, A. H. Mayer, Compos. Sci. Technol. 2003, 63, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVynsw%3D%3D&md5=85bb2fad7f08d7972f1744b80de2e7c2CAS |
[17] J. Liu, Y. Tian, Y. Chen, J. Liang, L. Zhang, H. Fong, Mater. Chem. Phys. 2010, 122, 548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFajsrw%3D&md5=b6e7977b35f083a6e99bca5cff464bedCAS |
[18] N. Lopattananon, S. A. Hayes, F. R. Jones, J. Adhesion 2002, 78, 313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFekurw%3D&md5=7fdce1c597591fe47d4902a0a98bd680CAS |
[19] U. Zielke, K. J. Hüttinger, W. P. Hoffman, Carbon 1996, 34, 999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVWltr4%3D&md5=5252eeec083fd342752c22bc470c1e16CAS |
[20] G. J. Ehlert, Y. Lin, H. A. Sodano, Carbon 2011, 49, 4246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyqu7o%3D&md5=47aa9d1d8ec8191c8a2fb2a4ebecd1eaCAS |
[21] L. Li, L. Liu, H. Wan, Q. Xu, G. Cheng, J. Wen, Appl. Surf. Sci. 2009, 255, 8030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsl2jsr0%3D&md5=8fed8b012335a9a3346192c54e71fecbCAS |
[22] J. I. Paredes, A. Martínez-Alonso, J. M. D. Tascón, Carbon 2002, 40, 1101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlOksr0%3D&md5=0258507fcdf08106f182bf30a1a4bf53CAS |
[23] M. Ishifune, R. Suzuki, Y. Mima, K. Uchida, N. Yamashita, S. Kashimura, Electrochim. Acta 2005, 51, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVams7bO&md5=c9c010acd4bc4915fce3696a7d77d0a7CAS |
[24] J. B. Donnet, G. Guilpain, Carbon 1989, 27, 749.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. U. Pittman, G. R. He, B. Wu, S. D. Gardner, Carbon 1997, 35, 317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVKmtrg%3D&md5=3b41f2d8ddbc3670b0308a1d67d988e1CAS |
[26] M. L. Auad, M. A. Mosiewicki, C. Uzunpinar, R. J. J. Williams, Polym. Eng. Sci. 2010, 50, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrtrrP&md5=e0922a4a6d6cc8612e02a08d89793c13CAS |
[27] M. Delamar, G. Désarmot, O. Fagebaume, R. Hitmi, J. Pinsonc, J. M. Savéant, Carbon 1997, 35, 801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt12rsrk%3D&md5=99ac81efca87455dcc4eab1abeb59b55CAS |
[28] J. L. Bahr, J. M. Tour, J. Mater. Chem. 2002, 12, 1952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslSjsro%3D&md5=7bcd8ec3b80e0c37ea7883658ec33afeCAS |
[29] S. Banerjee, T. Hemraj-Benny, S. S. Wong, Adv. Mater. 2005, 17, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGht74%3D&md5=ce871c0480fd0671e7b70e2de195597fCAS |
[30] A. Hirsch, O. Vostrowsky, Top. Curr. Chem. 2005, 245, 193.
| 1:CAS:528:DC%2BD2MXktV2qtLk%3D&md5=9f45d771b1bb60a808228240311e4cb8CAS |
[31] M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 1993, 115, 9798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVKgug%3D%3D&md5=66ce477c8e3f2f288176dde95e47ffbcCAS |
[32] M. Prato, M. Maggini, G. Scorrano, Synth. Met. 1996, 77, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlGgtLc%3D&md5=0bd70db67b3f38ffb924a458449b6dd5CAS |
[33] M. Maggini, G. Scorrano, A. Bianco, C. Toniolo, R. P. Sijbesma, F. Wudl, M. Prato, J. Chem. Soc. Chem. Commun. 1994, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVGqsrk%3D&md5=65a041461b7b9238a7ff7c72ada33b25CAS |
[34] O. Tsuge, S. Kanemasa, in Recent Advances in Azomethine Ylide Chemistry (Ed. R. K. Alan) 1989, Vol. 45, pp. 231–349 (Academic Press: San Diego, CA).
[35] C. Najera, J. M. Sansano, Curr. Org. Chem. 2003, 7, 1105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFGlsro%3D&md5=f3f28b1f42baa09ad5cf970dc3333ee3CAS |
[36] D. M. Guldi, M. Maggini, N. Martin, M. Prato, Carbon 2000, 38, 1615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1CmtL8%3D&md5=bf76827dfab02834d9dc5e39874121c3CAS |
[37] N. Martín, F. Giacalone, J. L. Segura, D. M. Guldi, Synth. Met. 2004, 147, 57.
| Crossref | GoogleScholarGoogle Scholar |
[38] R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, Carbon 2000, 38, 1653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1CmtLg%3D&md5=0280bbd721092b0740e5a236cc193761CAS |
[39] M. Prato, M. Maggini, C. Giacometti, G. Scorrano, G. Sandona, G. Farnia, Tetrahedron 1996, 52, 5221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFaku7o%3D&md5=14d6eb1689bc5fba09fb869ecf374bbeCAS |
[40] K. Kordatos, T. Da Ros, M. Prato, M. Carano, F. Paolucci, S. Roffia, Carbon 2000, 38, 1557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Cmt7o%3D&md5=cc284fd48a994b9fbad1d3510416a16fCAS |
[41] V. Tomberli, T. Da Ros, S. Bosi, M. Prato, Carbon 2000, 38, 1551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Cmt70%3D&md5=e1a22eada9e59b38c53df88ef92ab468CAS |
[42] A. Ruseckas, M. Theander, M. R. Andersson, M. Svensson, M. Prato, O. Inganäs, V. Sundström, Chem. Phys. Lett. 2000, 322, 136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVyjsrk%3D&md5=9eaddd9059d1438bf5f9a31ddbda86d9CAS |
[43] M. Prato, A. Bianco, M. Maggini, G. Scorrano, C. Toniolo, F. Wudl, J. Org. Chem. 1993, 58, 5578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmt1Kns7w%3D&md5=9f181c4985dc4d7e0805afb9a68cfaa6CAS |
[44] A. Bianco, T. Bertolini, M. Crisma, G. Valle, C. Toniolo, M. Maggini, G. Scorrano, M. Prato, J. Pept. Res. 1997, 50, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFagurc%3D&md5=bad0d73ceebe90e18d5fb120b696e810CAS | 9309579PubMed |
[45] A. Bianco, M. Prato, Adv. Mater. 2003, 15, 1765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCktbc%3D&md5=ba625871b827a5a79d53007d188104a3CAS |
[46] C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, BBA – Biomembranes 2006, 1758, 404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Wltrg%3D&md5=3a8cd74fd2d6bc427e9d6120f4409405CAS | 16307724PubMed |
[47] D. Pantarotto, C. D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, M. Prato, A. Bianco, Chem. Biol. 2003, 10, 961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVyksb4%3D&md5=71b67e80ee9023108ad109906ea217a1CAS | 14583262PubMed |
[48] R. Araujo, M. C. Paiva, M. F. Proenca, C. J. R. Silva, Compos. Sci. Technol. 2007, 67, 806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFyjsg%3D%3D&md5=1a6af9930fb875b350dbd26dc0292d83CAS |
[49] M. G. Huson, J. S. Church, A. A. Kafi, A. L. Woodhead, J. Khoo, M. S. R. N. Kiran, J. E. Bradby, B. L. Fox, Carbon 2014, 68, 240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGls7jI&md5=aa92ce70158336c8e11b5234616c557fCAS |
[50] R. Araujo, F. M. Fernandes, M. F. Proenca, C. J. Silva, M. C. Paiva, J. Nanosci. Nanotechnol. 2007, 7, 3441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KntrfJ&md5=279b81b25e51aabea0b34df35e7a0158CAS | 18330154PubMed |
[51] N. Chandan, M. G. Moloney, Tetrahedron Lett. 2013, 54, 1987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlansb8%3D&md5=99fea4233828842a839fe95959cae2bcCAS |
[52] Y. Inoue, T. Omodani, R. Shiratake, F. Sato, Tetrahedron – Asymmetr. 2010, 21, 1855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGru7bJ&md5=891571849d63baa3552855c4adb5b3a0CAS |
[53] S. P. Singh, A. Michaelides, A. R. Merrill, A. L. Schwan, J. Org. Chem. 2011, 76, 6825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVSltbg%3D&md5=e20ac7201ca3c9c704151dcaff38d05fCAS | 21770382PubMed |
[54] L. L. Silva, A. C. Joussef, J. Nat. Prod. 2011, 74, 1531.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1ekt7k%3D&md5=2063aefdef2251c3fdaf094c1798647aCAS | 21545108PubMed |
[55] M. Branca, S. B. Pena, R. G. Guillot, D. Gori, V. R. Alezra, C. Kouklovsky, J. Am. Chem. Soc. 2009, 131, 10711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotF2rur0%3D&md5=627609df193e23d441f5809e4a2b6126CAS | 19580316PubMed |
[56] B. Severino, F. Fiorino, A. Esposito, F. Frecentese, F. De Angelis, E. Perissutti, Tetrahedron 2009, 65, 206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKhsLvP&md5=3bade8ac19585b9cfc9493d7564a6302CAS |
[57] R. De Wachter, L. Brans, S. Ballet, I. Van den Eynde, D. Feytens, A. Keresztes, Tetrahedron 2009, 65, 2266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1aju7g%3D&md5=21e89d1ffd4de60c46cc0823662562efCAS |
[58] I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFKrtr8%3D&md5=86480bc58288a8077aff14dbfda75097CAS | 16011324PubMed |
[59] L. Servinis, L. C. Henderson, T. R. Gengenbach, A. A. Kafi, M. G. Huson, B. L. Fox, Carbon 2013, 54, 378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyrurvI&md5=38f8e3b4b5a98d06ebdbc0f5a85e755dCAS |
[60] K. Kordatos, T. Da Ros, S. Bosi, E. Vázquez, M. Bergamin, C. Cusan, F. Pellarini, V. Tomberli, B. Baiti, D. Pantarotto, V. Georgakilas, G. Spalluto, M. Prato, J. Org. Chem. 2001, 66, 4915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVarsLw%3D&md5=3e35668e6b90881f6f482990578cfa9cCAS | 11442425PubMed |
[61] V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J.-P. Briand, M. Prato, Chem. Commun. 2002, 3050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFOks7o%3D&md5=f1c109c0738a73fbd078c8b2db515834CAS |
[62] V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, A. Hirsch, J. Am. Chem. Soc. 2002, 124, 760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVylug%3D%3D&md5=9e450d1ca00cfe1c2f1067bcb52f7fa9CAS | 11817945PubMed |
[63] J. Jang, S.-I. Moon, Polym. Composite. 1995, 16, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFShurY%3D&md5=920c3b214a856d5bc70ff146a9f9da14CAS |
[64] K. K. C. Ho, A. F. Lee, A. Bismarck, Carbon 2007, 45, 775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWitLY%3D&md5=f274251c2364d6278cd0d43027af30eaCAS |
[65] T. Greene, P. Wuts, Protective Groups in Organic Synthesis, 4th edn 2007 (John Wiley & Sons, Inc.: New York, NY).
[66] N. Karousis, H. Ali-Boucetta, K. Kostarelos, N. Tagmatarchis, Mater. Sci. Eng. B 2008, 152, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWktL%2FP&md5=4c66a9fbab45d85fb10b094dd8ae698aCAS |
[67] J. Guerra, M. A. Herrero, B. Carrión, F. C. Pérez-Martínez, M. Lucío, N. Rubio, M. Meneghetti, M. Prato, V. Ceña, E. Vázquez, Carbon 2012, 50, 2832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1yjs78%3D&md5=fdcf969d4a0caba041e77ece31775a58CAS |
[68] S. Campidelli, C. Sooambar, E. Lozano Diz, C. Ehli, D. M. Guldi, M. Prato, J. Am. Chem. Soc. 2006, 128, 12544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFaiurw%3D&md5=88dc9aba5a89dddd9a2991e9d6ec7a64CAS | 16984205PubMed |
[69] M. A. Ghanem, I. Kocak, A. Al-Mayouf, M. AlHoshan, P. N. Bartlett, Electrochim. Acta 2012, 68, 74.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVSnsrc%3D&md5=88f449eb006ad36c39b7ddc8d969b566CAS |
[70] M. A. Ghanem, I. Kocak, A. Al-Mayouf, P. N. Bartlett, Electrochem. Commun. 2008, 12, 1231.
[71] W. Weibull, J. Appl. Mech. 1951, 18, 293.
[72] C. P. Beetz, Fibre Sci. Technol. 1982, 16, 81.
| Crossref | GoogleScholarGoogle Scholar |
[73] C. A. Baillie, M. G. Bader, J. Mater. Sci. 1994, 29, 3822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVSrsL0%3D&md5=326766138653d44810fd4233c0e97f8bCAS |
[74] P. J. Herrera-Franco, L. T. Drzal, Composites 1992, 23, 2.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Okt7Y%3D&md5=dab1df8a5bde409ed477341740083fcfCAS |
[75] S. Feih, K. Wonsyld, D. Minzari, P. Westermann, H. Lilholt, Testing Procedure for Single Fibre Fragmentation Test 2004, pp. 1–28 (Risø National Laboratory: Roskilde, Denmark).
[76] B. Cornelissen, L. Warnet, R. Akkerman, in Proceedings of the 14th International Conference on Experimental Mechanics (ICEM 14) 2010, Vol. 6, pp. 1–8 (Elsevier: Amsterdam).