Rheological Properties and Salt Resistance of a Hydrophobically Associating Polyacrylamide
Quanhua Deng A , Haiping Li B , Ying Li A D , Xulong Cao C , Yong Yang C and Xinwang Song CA Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, China.
B State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
C Geological Scientific Research Institute, Shengli Oilfield, Dongying 257015, China.
D Corresponding author. Email: yingli@sdu.edu.cn
Australian Journal of Chemistry 67(10) 1396-1402 https://doi.org/10.1071/CH14204
Submitted: 1 April 2014 Accepted: 12 May 2014 Published: 3 July 2014
Abstract
The rheological properties of electrolyte solution of a hydrophobically associating acrylamide-based copolymer (HA-PAM) containing hydrophobically modified monomer and sodium 2-acrylamido-2-methylpropanesulfonic sulfonate were investigated in this paper. The study mainly focussed on effects of electrolyte concentration, temperature, and shear rate on the solution rheological properties. HA-PAM exhibited much stronger salt tolerance and shearing resistance than the commonly used partially hydrolyzed polyacrylamide, and has great potential for application in tertiary oil recovery of oilfields with high salinity. The salt resistance mechanism of HA-PAM in solution was investigated by combining molecular simulation and experimental methods. The structure–performance relationship of the salt-resisting polymer may provide useful guidance for design and synthesis of novel water-soluble polymers with high salt resistance.
References
[1] D. A. Z. Wever, F. Picchioni, A. A. Broekhuis, Prog. Polym. Sci. 2011, 36, 1558.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWktrs%3D&md5=86011aeb7f8f6257764dac8125383697CAS |
[2] C. Zhong, L. Jiang, X. Peng, J. Polym. Sci. Pol. Chem. 2010, 48, 1241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yhtrw%3D&md5=04111fb1b8633d66dad997617a4a83ebCAS |
[3] D. A. Z. Wever, L. M. Polgar, M. C. Stuart, F. Picchioni, A. A. Broekhuis, Ind. Eng. Chem. Res. 2013, 52, 16993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Kqtr3M&md5=0ce86d4438f9a7d761b2a58457464252CAS |
[4] D. A. Z. Wever, F. Picchioni, A. A. Broekhuis, Ind. Eng. Chem. Res. 2013, 52, 16352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CmsrbI&md5=eb76d820a4e9e6b8811d5e59e07378e4CAS |
[5] D. A. Z. Wever, F. Picchioni, A. Broekhuis, Eur. Polym. J. 2013, 49, 3289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCisb3K&md5=b8e9b8f766a7da1c85926ffd982f6d7cCAS |
[6] E. K. Penott-Chang, L. Gouveia, I. J. Fernández, A. J. Müller, A. Díaz-Barrios, A. E. Sáez, Colloid. Surface. A 2007, 295, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlalt78%3D&md5=d43077aeaac596144068854a76e409f3CAS |
[7] E. E. Kathmann, L. A. White, C. L. McCormick, Polymer 1997, 38, 871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Slt7g%3D&md5=88fd0465ed71fc8d2b33cf2fba641468CAS |
[8] S. Hietala, P. Mononen, S. Strandman, P. Järvi, M. Torkkeli, K. Jankova, S. Hvilsted, H. Tenhu, Polymer 2007, 48, 4087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVels7s%3D&md5=bb7886ed345f6ca991856ddfcdfb422cCAS |
[9] A. Sabhapondit, A. Borthakur, I. Haque, Energy Fuels 2003, 17, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlWit7Y%3D&md5=380ae6058ebbbc84457da3c83e2b1d6aCAS |
[10] H. Li, R. Chen, X. Lu, W. Hou, Carbohydr. Polym. 2012, 90, 1330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12jsbvP&md5=424b19ed91d431a570eb926c59b9e768CAS | 22939348PubMed |
[11] W. Xue, I. W. Hamley, V. Castelletto, P. D. Olmsted, Eur. Polym. J. 2004, 40, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGju7c%3D&md5=3e76cee6f79a933a1e07b05f1b0cffe9CAS |
[12] F. Xiong, J. Li, H. Wang, Y. Chen, J. Cheng, J. Zhu, Polymer 2006, 47, 6636.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGhsLc%3D&md5=5cad1a1d95d440734d1f82c0e0895f94CAS |
[13] G. Yahya, S. Ali, M. Al‐Naafa, E. Hamad, J. Appl. Polym. Sci. 1995, 57, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsVanu7c%3D&md5=36e0f6a1e3bd15e9da21c0c926e3c71eCAS |
[14] D. Charpentier, G. Mocanu, A. Carpov, S. Chapelle, L. Merle, G. Müller, Carbohydr. Polym. 1997, 33, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVSrug%3D%3D&md5=066136c43ff9f965c2b4b37e9ca6d178CAS |
[15] C. Esquenet, P. Terech, F. Boué, E. Buhler, Langmuir 2004, 20, 3583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Oqs7k%3D&md5=2c6a48c27aa476f514c10cf99c3cc756CAS | 15875387PubMed |
[16] P. Raffa, P. Brandenburg, D. A. Z. Wever, A. A. Broekhuis, F. Picchioni, Macromolecules 2013, 46, 7106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlaisbfI&md5=f161c0d1821dafee027f4777505b4335CAS |
[17] S. Wu, R. A. Shanks, G. Bryant, J. Appl. Polym. Sci. 2006, 100, 4348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVyqsbY%3D&md5=ecd67b075eabb54f3019c574d89c91afCAS |
[18] C. L. McCormick, J. C. Middleton, D. F. Cummins, Macromolecules 1992, 25, 1201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XosValtw%3D%3D&md5=e144d1cce662de1f5953eb71bbcbe21eCAS |
[19] Z. Ye, G. Gou, S. Gou, W. Jiang, T. Liu, J. Appl. Polym. Sci. 2013, 128, 2003.
| 1:CAS:528:DC%2BC38XhtFOgt7%2FP&md5=511642ffa2c9c636a0c0870883effaf9CAS |
[20] W. Kuang, J. Zhang, R. Li, B. Wu, Y. Tan, Polym. Bull. 2013, 70, 3547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOisbfK&md5=b9ba01b4f068c9c2705d9d82961c9a88CAS |
[21] C. Senan, J. Meadows, P. T. Shone, P. A. Williams, Langmuir 1994, 10, 2471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFynurk%3D&md5=3b697a0919eff6d1bd39ca364939d1fcCAS |
[22] Y. Mei, Y. Han, H. Wang, L. Xie, H. Zhou, J. Surfactants Deterg. 2014, 17, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yrsLvF&md5=d592751f93dcf5450a25650980fcfccbCAS |
[23] Q. Li, R. Yuan, L. Ying, J. Appl. Polym. Sci. 2013, 128, 206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVyhsLs%3D&md5=77ea3ac93da7dbc5915b2c23c7170de2CAS |
[24] P. Chen, L. Yao, Y. Liu, J. Luo, G. Zhou, B. Jiang, J. Mol. Model. 2012, 18, 3153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlyqsLo%3D&md5=d6f452f2db85744b533d9cb760554b88CAS | 22228082PubMed |
[25] C. l. Ren, W. D. Tian, I. Szleifer, Y. Q. Ma, Macromolecules 2011, 44, 1719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFSqtro%3D&md5=c1bd0417d9d7e42b9252bbbcc9979563CAS |
[26] T. Zhao, G. Xu, S. Yuan, Y. Chen, H. Yan, J. Phys. Chem. B 2010, 114, 5025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVyhs7w%3D&md5=b527bffdf9020127e187992c4536d1d9CAS | 20353250PubMed |
[27] H. Li, W. Hou, Food Hydrocoll. 2011, 25, 1547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVGlt78%3D&md5=bc392e09ae944480550a572984c96181CAS |
[28] R. D. Groot, Langmuir 2000, 16, 7493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFOru78%3D&md5=e743f9bc9a509294a7a345070612a856CAS |
[29] J. Jeon, A. V. Dobrynin, J. Phys. Chem. B 2006, 110, 24652.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyntbfL&md5=ddfc7831255017c85dfd1b9b62b458bbCAS | 17134228PubMed |
[30] H. Yan, X. L. Guo, S. L. Yuan, C. B. Liu, Langmuir 2011, 27, 5762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVSmtr8%3D&md5=7c4e64f473859a158b20a67a2505acc7CAS | 21495650PubMed |
[31] Q. Liao, A. V. Dobrynin, M. Rubinstein, Macromolecules 2003, 36, 3386.
| Crossref | GoogleScholarGoogle Scholar |
[32] H. Yan, S. L. Yuan, G. Y. Xu, C. B. Liu, Langmuir 2010, 26, 10448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGgu7s%3D&md5=617d0970d0bb98cbdcf0a0f2e7b3320cCAS | 20550162PubMed |
[33] C. Li, Y. Li, R. Yuan, W. Lv, Langmuir 2013, 29, 5418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVynsbw%3D&md5=98106df173de404f23f4f59b66fb02c7CAS | 23586737PubMed |
[34] D. Wu, Y. Feng, G. Xu, Y. Chen, X. Cao, Y. Li, Colloid. Surface. A 2007, 299, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVSntLY%3D&md5=4b45256a6cc229a917365189fddafa74CAS |
[35] G. O. Yahya, E. Z. Hamad, Polymer 1995, 36, 3705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Oitbk%3D&md5=2f3a0e73c9013dd5c4b8ce0b65155ff5CAS |
[36] L. Ye, R. Huang, J. Appl. Polym. Sci. 1999, 74, 211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFeqt7k%3D&md5=7c0894d099fe41192f2c98ed078cf8d6CAS |
[37] J. Ma, B. Liang, P. Cui, H. Dai, R. Huang, Polymer 2003, 44, 1281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisl2rsw%3D%3D&md5=5f0db4b2ff3248e9b295d411cb512bd9CAS |
[38] S. M. A. Razavi, H. Karazhiyan, Food Hydrocoll. 2009, 23, 908.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yrsrfJ&md5=e56d14f6112ad01ad0c4cd6b3667122bCAS |
[39] S. P. Li, W. G. Hou, D. J. Sun, P. Z. Guo, C. X. Jia, J. F. Hu, Langmuir 2003, 19, 3172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Oktrs%3D&md5=d536301b4ff1358d9c5e3c2c2fee637fCAS |
[40] L. G. Patruyo, A. J. Müller, A. E. Sáez, Polymer 2002, 43, 6481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xntl2ktr4%3D&md5=0288f659305173bc859703d27ccbbbcdCAS |
[41] S. L. Cram, H. R. Brown, G. M. Spinks, D. Hourdet, C. Creton, Macromolecules 2005, 38, 2981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVWkurc%3D&md5=b32d36385c1bca7de870961a51ccab6cCAS |
[42] R. P. Wool, Macromolecules 1993, 26, 1564.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVygsb0%3D&md5=3ff8913a8508dacdcbc760d874c13f8fCAS |
[43] A. R. Saadatabadi, M. Nourani, M. A. Emadi, Iran. Polym. J. 2010, 19, 105.
| 1:CAS:528:DC%2BC3cXoslyqu70%3D&md5=d03487c2664fc12fa76d2a2500f6ec80CAS |
[44] K. C. Tam, W. K. Ng, R. D. Jenkins, Polymer 2005, 46, 4052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlCgsr8%3D&md5=d6a93caa7cdcf608ddab18f337ed7a23CAS |
[45] S. Biggs, J. Selb, F. Candau, Polymer 1993, 34, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhslSjtr4%3D&md5=4f32ff71739e03fbfae52ec32f19867eCAS |
[46] D. G. Peiffer, Polymer 1990, 31, 2353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXot12qsA%3D%3D&md5=b066e5a3b060544c57b63106fd3a1c1dCAS |
[47] Y. X. Zhang, A. H. Da, G. B. Butler, T. E. Hogen-Esch, J. Polym. Sci. Pol. Chem. 1992, 30, 1383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFait74%3D&md5=a6db60878864baf21f77010c790185ebCAS |
[48] J. Wang, L. Li, H. Ke, P. Liu, L. Zheng, X. Guo, S. F. Lincoln, Asia-Pac. J. Chem. Eng. 2009, 4, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlegtrnK&md5=6c78f191ecb65605a2e00c591376211cCAS |
[49] N. Beheshti, A.-L. Kjøniksen, K. Zhu, K. D. Knudsen, B. Nyström, J. Phys. Chem. B 2010, 114, 6273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVygtbg%3D&md5=e5f8f74b80b589b27151df0c6c12559cCAS | 20411972PubMed |
[50] S. P. Patel, G. Ranjan, V. S. Patel, Int. J. Biol. Macromol. 1987, 9, 314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Ortr4%3D&md5=b9fe93ee70a7d2b18dc1cbfded167261CAS |
[51] M. V. Badiger, A. Lutz, B. A. Wolf, Polymer 2000, 41, 1377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslKrtb8%3D&md5=a8203d841fdd6f6a859e45b9d13f19acCAS |
[52] J. Desbrieres, Polymer 2004, 45, 3285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1alurw%3D&md5=caf6fbcec1520ffec61de67fa19ae65aCAS |
[53] G. O. Yahaya, A. A. Ahdab, S. A. Ali, B. F. Abu-Sharkh, E. Z. Hamad, Polymer 2001, 42, 3363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslequg%3D%3D&md5=04f29967911631dec6a97da6fa8a5a19CAS |
[54] S. Shaikh, S. A. Ali, E. Z. Hamad, B. F. Abu-Sharkh, Polym. Eng. Sci. 1999, 39, 1962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt12isLY%3D&md5=0443ba87f0d1743c6aec76a3a623e5e3CAS |