Preparation and Structural Studies of Non-Symmetric Guanidinate-Supported Zirconium Complexes
Rafael Fernández-Galán A B , Juan-Antonio Navarro A , Fernando Carrillo-Hermosilla A B , Antonio Antiñolo A , Isabel López-Solera A and Elena Villaseñor AA Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Campus Universitario, Ciudad Real, 13071-Spain.
B Corresponding authors. Email: rafael.fgalan@uclm.es; fernando.carrillo@uclm.es
Australian Journal of Chemistry 67(7) 1063-1070 https://doi.org/10.1071/CH14181
Submitted: 28 March 2014 Accepted: 26 May 2014 Published: 16 June 2014
Abstract
The new lithium guanidinate salt [Li{μ-κ1,κ2,N,N′-(NEt)(N-t-Bu)CNMe2}(THF)]2 (1) was obtained by the reaction of HNMe2 with n-BuLi and further reaction with the asymmetric carbodiimide EtN=C=N-t-Bu. Guanidinate-supported zirconium complexes [Zr{κ2,N,N′-(NEt)(N-t-Bu)CNMe2}(μ-Cl)Cl2]2 (2), [Zr{κ2,N,N′-(NEt)(N-t-Bu)CNMe2}3Cl] (4), [Zr{κ2,N,N′-(NEt)(N-t-Bu)CNMe2}2(η5-C5H5)Cl] (5) and [Zr{κ2,N,N′-(NEt)(N-t-Bu)CNMe2}(η5-C5H5)2Cl] (6) were prepared. Complexes 2, 4, and 6 were synthesized by the metathesis reaction of ZrCl4 or [ZrCl2(η5-C5H5)2] with 1. The previously described complex [Zr{κ2,N,N′-(NEt)(N-t-Bu)CNMe2}2Cl2] (3), which was prepared by the insertion reaction of EtN=C=N-t-Bu into a metal–amido bond of [Zr(NMe2)2Cl2(THF)2], allowed the new complex 5 to be obtained by reaction with NaC5H5. All of the new complexes were characterized spectroscopically and the molecular structures of 1, 4, and 6 were determined by single-crystal X-ray diffraction.
References
[1] (a) J. Barker, M. Kilner, Coord. Chem. Rev. 1994, 133, 219.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvFCjtbY%3D&md5=31b2a2b9544f74959a77b773b114adfdCAS |
(b) F. T. Edelmann, Coord. Chem. Rev. 1994, 137, 403.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. T. Edelmann, Chem. Soc. Rev. 2009, 38, 2253.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. P. Coles, Dalton Trans. 2006, 985.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. J. Bailey, S. Pace, Coord. Chem. Rev. 2001, 214, 91.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. C. Junk, M. L. Cole, Chem. Commun. 2007, 1579.
| Crossref | GoogleScholarGoogle Scholar |
(g) F. T. Edelmann, Adv. Organomet. Chem. 2008, 57, 183.
| Crossref | GoogleScholarGoogle Scholar |
(h) F. T. Edelmann, Adv. Organomet. Chem. 2013, 61, 55.
| Crossref | GoogleScholarGoogle Scholar |
(i) B. L. Yonke, A. J. Keane, P. Y. Zavalij, L. R. Sita, Organometallics 2012, 31, 345.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. Collins, Coord. Chem. Rev. 2011, 255, 118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOnsrfM&md5=7d5399d4be7da05c24a1da3d1339cfc3CAS |
(b) A. A. Trifonov, Coord. Chem. Rev. 2010, 254, 1327.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Ajellal, D. M. Lyubov, M. A. Sinenkov, G. K. Fukin, A. V. Cherkasov, C. M. Thomas, J.-F. Carpentier, A. A. Trifonov, Chem. – Eur. J. 2008, 14, 5440.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Tsurugi, K. Yamada, M. Majumdar, Y. Sugino, A. Hayakawa, K. Mashima, Dalton Trans. 2011, 9358.
| Crossref | GoogleScholarGoogle Scholar |
(e) T.-G. Ong, G. P. A. Yap, D. S. Richeson, Chem. Commun. 2003, 2612.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Cao, Z. Du, W. Li, J. Li, Y. Zhang, F. Xu, Q. Shen, Inorg. Chem. 2011, 50, 3729.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Ge, A. Meetsma, B. O. Hessen, Organometallics 2008, 27, 3131.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) F. T. Edelmann, Chem. Soc. Rev. 2012, 41, 7657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ahtbrJ&md5=9f2091fd8407ef50e0f03f405f6932cdCAS | 22777063PubMed |
(b) S. E. Potts, C. J. Carmalt, C. S. Blackman, F. Abou-Chahine, D. Pugh, H. O. Davie, Organometallics 2009, 28, 1838.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. E. Potts, C. J. Carmalt, C. S. Blackman, F. Abou-Chahine, N. Leick, W. M. M. Kessels, H. O. Davies, P. N. Heys, Inorg. Chim. Acta 2010, 363, 1077.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. J. Carmalt, A. Newport, S. A. O’Neill, I. P. Parkin, A. J. P. White, D. J. Williams, Inorg. Chem. 2005, 44, 615.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. B. Wilder, L. L. Reitfort, K. A. Abboud, L. McElwee-White, Inorg. Chem. 2006, 45, 263.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Rische, A. Baunemann, M. Winter, R. A. Fischer, Inorg. Chem. 2006, 45, 269.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. Rische, H. Parala, E. Gemel, M. Winter, R. A. Fischer, Chem. Mater. 2006, 18, 6075.
| Crossref | GoogleScholarGoogle Scholar |
(h) D. Rische, H. Parala, A. Baunemann, T. Thiede, R. Fischer, Surf. Coat. Tech. 2007, 201, 9125.
| Crossref | GoogleScholarGoogle Scholar |
(i) R. A. Fischer, A. Baunemann, C. Gemel, Y. Kim, A. Milanov, D. Rische, M. Winter, Dalton Trans. 2005, 3051.
(j) M. Eleter, L. G. Hubert-Pfalzgraf, S. Daniele, G. Pilet, B. Tinant, Polyhedron 2010, 29, 2522.
| Crossref | GoogleScholarGoogle Scholar |
(k) Y. A. Wasslen, E. Tois, S. Haukka, K. A. Kreisel, G. P. A. Yap, M. D. Halls, S. T. Barry, Inorg. Chem. 2010, 49, 1976.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) See for example: D. Wood, G. P. A. Yap, D. S. Richeson, Inorg. Chem. 1999, 38, 5788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOktbo%3D&md5=17c203351445b6b4be61e0bc33573b0fCAS |
(b) T.-G. Ong, D. Wood, G. P. A. Yap, D. S. Richeson, Organometallics 2002, 21, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) T.-G. Ong, G. P. A. Yap, D. S. Richeson, J. Am. Chem. Soc. 2003, 125, 8100.
| Crossref | GoogleScholarGoogle Scholar |
(d) T.-G. Ong, D. Wood, G. P. A. Yap, D. S. Richeson, Organometallics 2002, 21, 2839.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Bazinet, D. Wood, G. P. A. Yap, D. S. Richeson, Inorg. Chem. 2003, 42, 6225.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. P. Duncan, S. M. Mullins, J. Arnold, R. G. Bergman, Organometallics 2001, 20, 1808.
| Crossref | GoogleScholarGoogle Scholar |
(g) X.-A. Pang, Y.-M. Yao, J.-F. Wang, H.-T. Sheng, Y. Zhang, Q. Shen, Chin. J. Chem. 2005, 23, 1193.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. P. Coles, P. B. Hitchcock, Organometallics 2003, 22, 5201.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. P. Coles, P. B. Hitchcock, Dalton Trans. 2001, 1169.
| Crossref | GoogleScholarGoogle Scholar |
(j) A. F. Maddox, K. A. Erickson, J. M. Tanski, R. Waterman, Chem. Commun. 2011, 11769.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) C. Alonso-Moreno, A. Antiñolo, F. Carrillo-Hermosilla, A. Otero, Chem. Soc. Rev. 2014, 43, 3406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFGhsLY%3D&md5=a261309266c1b9a78d36e538caedb362CAS | 24626874PubMed |
(b) R. Fernández-Galán, A. Antiñolo, F. Carrillo-Hermosilla, I. López-Solera, A. Otero, A. Serrano-Laguna, E. Villaseñor, J. Organomet. Chem. 2012, 711, 35.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Fernández-Galán, A. Antiñolo, F. Carrillo-Hermosilla, I. López-Solera, A. Otero, A. Serrano-Laguna, E. Villaseñor, Organometallics 2012, 31, 8360.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Elorriaga, F. Carrillo-Hermosilla, A. Antiñolo, I. López-Solera, B. Menot, R. Fernández-Galán, E. Villaseñor, A. Otero, Organometallics 2012, 31, 1840.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Elorriaga, F. Carrillo-Hermosilla, A. Antiñolo, I. López-Solera, R. Fernández-Galán, A. Serrano, E. Villaseñor, Eur. J. Inorg. Chem. 2013, 2940.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Elorriaga, F. Carrillo-Hermosilla, A. Antiñolo, F. J. Suárez, I. López-Solera, R. Fernández-Galán, E. Villaseñor, Dalton Trans. 2013, 8223.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. Elorriaga, F. Carrillo-Hermosilla, A. Antiñolo, I. López-Solera, R. Fernández-Galán, E. Villaseñor, Chem. Commun. 2013, 8701.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) S. R. Foley, G. P. A. Yap, D. S. Richeson, Inorg. Chem. 2002, 41, 4149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFOjsLg%3D&md5=ecd5982681b37a4640132808154706adCAS | 12160402PubMed |
(b) M. P. Coles, P. B. Hitchcock, Chem. Commun. 2005, 3165.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. E. Mansfield, M. P. Coles, P. B. Hitchcock, Dalton Trans. 2005, 2833.
| Crossref | GoogleScholarGoogle Scholar |
(d) X.-A. Pang, Y.-M. Yao, J.-F. Wang, H.-T. Sheng, Y. Zhang, Q. Shen, Chin. J. Chem. 2005, 23, 1193.
| Crossref | GoogleScholarGoogle Scholar |
[7] C. Jones, C. Schulten, S. Nembenna, A. Stasch, J. Chem. Crystallogr. 2012, 42, 866.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCmtb7O&md5=acde986590cce7147ac6b256f6f4863eCAS |
[8] M. Zhou, S. Zhang, H. Tong, W.-H. Sun, D. Liu, Inorg. Chem. Commun. 2007, 10, 1262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2qsbnI&md5=48b8600a69a9936d5c385e03c27def3cCAS |
[9] S. Brenner, R. Kempe, P. Z. Arndt, Z. Anorg. Allg. Chem. 1995, 621, 2021.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. Zhou, H. Tong, X. Wei, D. Liu, J. Organomet. Chem. 2007, 692, 5195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFersLvP&md5=a11beddddb2aece5e82a8ff899001c28CAS |
[11] (a) K. C. Jayaratne, L. R. Sita, J. Am. Chem. Soc. 2000, 122, 958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVygsQ%3D%3D&md5=b625da025d50bcc21849b25ddad7613bCAS |
(b) K. C. Jayaratne, L. R. Sita, J. Am. Chem. Soc. 2001, 123, 10754.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. J. Keaton, K. C. Jayaratne, D. A. Henningsen, L. A. Koterwas, L. R. Sita, J. Am. Chem. Soc. 2001, 123, 6197.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. J. Keaton, L. A. Koterwas, J. C. Fettinger, L. R. Sita, J. Am. Chem. Soc. 2002, 124, 5932.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. J. Keaton, L. R. Sita, J. Am. Chem. Soc. 2002, 124, 9070.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. Erker, Acc. Chem. Res. 1984, 17, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXht1WisLY%3D&md5=ac85303d540b92572db53fa5e80ee6d5CAS |
[13] D. Polo-Cerón, S. Gómez-Ruiz, S. Prashar, M. Fajardo, A. Antiñolo, A. Otero, I. López-Solera, M. L. Reyes, J. Mol. Catal. Chem. 2007, 268, 264.
| Crossref | GoogleScholarGoogle Scholar |
[14] SAINT+ v7.12a: Area-Detector Integration Program 2004 (Bruker-Nonius AXS: Madison, WI).
[15] G. M. Sheldrick, SADABS Version 2004/1: A Program for Empirical Absorption Correction 2004 (University of Göttingen: Göttingen, Germany).
[16] SHELXTL-NT Version 6.12: Structure Determination Package 2001 (Bruker-Nonius AXS: Madison, WI).