Low-valent Iron Complexes Stabilised by a Bulky Guanidinate Ligand: Synthesis and Reactivity Studies*
Lea Fohlmeister A and Cameron Jones A BA School of Chemistry, PO Box 23, Monash University, Melbourne, Vic. 3800, Australia.
B Corresponding author. Email: cameron.jones@monash.edu
Australian Journal of Chemistry 67(7) 1011-1016 https://doi.org/10.1071/CH14157
Submitted: 17 March 2014 Accepted: 9 April 2014 Published: 29 May 2014
Abstract
A toluene-capped guanidinato iron(i) complex [(Pipiso)Fe(η6-toluene)] (Pipiso = [(DipN)2C(cis-NC5H8Me2-2,6)]–) was prepared by magnesium metal reduction of {[(Pipiso)FeII(µ-Br)]2} in toluene. The reactivity of the closely related FeI–FeI multiply bonded species, {[Fe(μ-Pipiso)]2} towards a range of unsaturated small molecule substrates was investigated, and found to be broadly similar to that of low-valent β-diketiminato iron complexes. That is, its reaction with CO yielded the iron(i) carbonyl complex [(Pipiso)Fe(CO)3], whereas reaction with CO2 formed the same product via an apparent reductive disproportionation of the substrate. In contrast, reaction between {[Fe(μ-Pipiso)]2} and CS2 led to reductive C=S bond cleavage and the isolation of {[(Pipiso)Fe]2(μ-S)(μ-CS)}. Different reactivity was seen with AdN3 (Ad = 1-adamantyl), which was reductively coupled by the iron(i) dimer to give iron(ii) hexaazenyl complex {[(Pipiso)Fe]2(μ-AdN6Ad)}.
References
[1] (a) Selected reviews: J. P. Krogman, C. M. Thomas, Chem. Commun. 2014, 50,| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFequ7c%3D&md5=2305a2f57cb1fbacf60fb44081b9cfbcCAS |
(b) Y. C. Tsai, Coord. Chem. Rev. 2012, 256, 722.
| Crossref | GoogleScholarGoogle Scholar |
[2] See for example: T. Nguyen, W. A. Merrill, C. Ni, H. Lei, J. C. Fettinger, B. D. Ellis, G. J. Long, M. Brynda, P. P. Power, Angew. Chem. Int. Ed. 2008, 47, 9115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCnt7zL&md5=c0cf053f60eba3c31fb6449ac028ce4aCAS |
[3] See for example: P. L. Holland, Accounts Chem. Res. 2008, 41, 905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFSrsrs%3D&md5=d379834d46a5124a0a4ae1a38cc60912CAS |
[4] (a) C. J. Adams, R. B. Bedford, E. Carter, N. J. Gower, M. F. Haddow, J. N. Harvey, M. Huwe, M. Á. Cartes, S. M. Mansell, C. Mendoza, D. M. Murphy, E. C. Neeve, J. Nunn, J. Am. Chem. Soc. 2012, 134, 10333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Smtbo%3D&md5=e60db038cb17beff7be06d6a5be9784eCAS | 22694754PubMed |
(b) K. Weber, E.-M. Schnöckelborg, R. Wolf, ChemCatChem 2011, 3, 1572.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, J. R. Long, Nat. Chem. 2013, 5, 577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVeju7c%3D&md5=ca229f7b230b6a7a05ebca334a6d27d2CAS | 23787747PubMed |
[6] R. M. Davydov, M. P. McLaughlin, E. Bill, B. M. Hoffman, P. L. Holland, Inorg. Chem. 2013, 52, 7323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFeht7k%3D&md5=3cb4e138749ca7d26dc976fd259d4845CAS | 24004284PubMed |
[7] J. M. Smith, A. R. Sadique, T. R. Cundari, K. R. Rodgers, G. Lukat-Rodgers, R. J. Lachicotte, C. J. Flaschenriem, J. Vela, P. L. Holland, J. Am. Chem. Soc. 2006, 128, 756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVCitw%3D%3D&md5=368aa04f306e63b33bd8d124a474d204CAS | 16417365PubMed |
[8] See for example: R. E. Cowley, M. R. Golder, N. A. Eckert, M. H. Al-Afyouni, P. L. Holland, Organometallics 2013, 32, 5289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyrtLfK&md5=e7fbf93fd6f09958e02ab24fd1bc0821CAS |
[9] See for example: Y. Yu, J. M. Smith, C. J. Flaschenriem, P. L. Holland, Inorg. Chem. 2006, 45, 5742.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1ylsLY%3D&md5=e482a8df3e27f9956809864780124c96CAS | 16841977PubMed |
[10] M. M. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland, Science 2011, 334, 780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagtrjK&md5=8ddf26ba55ae327e20109baa85b0788aCAS | 22076372PubMed |
[11] C. Jones, Coord. Chem. Rev. 2010, 254, 1273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Gqtrw%3D&md5=e476c1a19ed2fba889ea78f90f23b07aCAS |
[12] S. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhu7nL&md5=05ff871a367a433c75d6cfaac7336562CAS | 17991827PubMed |
[13] (a) C. Jones, P. C. Junk, J. A. Platts, A. Stasch, J. Am. Chem. Soc. 2006, 128, 2206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFWhuw%3D%3D&md5=5c45825cd4dc7ead2000399c161322ebCAS | 16478162PubMed |
(b) S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones, A. Stasch, Nat. Chem. 2010, 2, 865.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Jones, S. J. Bonyhady, N. Holzmann, G. Frenking, A. Stasch, Inorg. Chem. 2011, 50, 12315.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. P. Green, C. Jones, G. Jin, A. Stasch, Inorg. Chem. 2007, 46, 8.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) C. Jones, C. Schulten, L. Fohlmeister, A. Stasch, K. S. Murray, B. Moubaraki, S. Kohl, M. Z. Ertem, L. Gagliardi, C. J. Cramer, Chem. Eur. J. 2011, 17, 1294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVSktg%3D%3D&md5=67e654e0523ab80d6b9039fb62087bcfCAS | 21243697PubMed |
(b) C. Jones, C. Schulten, R. P. Rose, A. Stasch, S. Aldridge, W. D. Woodul, K. S. Murray, B. Moubaraki, M. Brynda, G. La Macchia, L. Gagliardi, Angew. Chem. Int. Ed. 2009, 48, 7406.
| Crossref | GoogleScholarGoogle Scholar |
[15] D. Heitmann, C. Jones, P. C. Junk, K.-A. Lippert, A. Stasch, Dalton Trans. 2007, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlemtbvN&md5=d8525d0939779113fbdd0a5779009d67CAS | 17180185PubMed |
[16] R. P. Rose, C. Jones, C. Schulten, S. Aldridge, A. Stasch, Chem. Eur. J. 2008, 14, 8477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OlsLrP&md5=ce0105f42d5a875d69ae08e262789613CAS | 18698573PubMed |
[17] L. Fohlmeister, S. Liu, C. Schulten, B. Moubaraki, A. Stasch, J. D. Cashion, K. S. Murray, L. Gagliardi, C. Jones, Angew. Chem. Int. Ed. 2012, 51, 8294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVSkt7s%3D&md5=91232430f3c2a283248ec09baa36f4beCAS |
[18] R. Alvarez, J. L. Atwood, E. Carmona, P. J. Perez, M. L. Poveda, R. D. Rogers, Inorg. Chem. 1991, 30, 1493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsFGqsrs%3D&md5=8fc2c89489cb990b00061a5f5f9c7a84CAS |
[19] A. R. Sadique, W. W. Brennessel, P. L. Holland, Inorg. Chem. 2008, 47, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFelsw%3D%3D&md5=8b06cc2ae18e020f9adfdbc198381c91CAS | 18171059PubMed |
[20] P. V. Broadhurst, B. F. G. Johnson, J. Lewis, P. R. Raithby, J. Chem. Soc. Chem. Commun. 1980, 812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVGqsg%3D%3D&md5=e821bbd32a2e5a7af0a85d9220a23d99CAS |
[21] As determined from a survey of the Cambridge Crystallographic Database, March 2014, 2014.
[22] B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez, Dalton Trans. 2008, 2832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrurY%3D&md5=47b6f8c5a98799472c1cf8b35b56375dCAS | 18478144PubMed |
[23] (a) C. A. Nijhuis, E. Jellema, T. J. J. Sciarone, A. Meetsma, P. H. M. Budzelaar, B. Hessen, Eur. J. Inorg. Chem. 2005, 2089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsV2gsLo%3D&md5=26d3a312320226288aad7a089a5c8d6eCAS |
(b) For selected other examples of neutral, square planar iron complexes, see S. H. Strauss, M. E. Silver, K. M. Long, R. G. Thompson, R. A. Hudgens, K. Spartalian, J. A. Ibers, J. Am. Chem. Soc. 1985, 107, 4207.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. W. Bouwkamp, S. C. Bart, E. J. Hawrelak, R. J. Trovitch, E. Lobkovsky, P. J. Chirik, Chem. Commun. 2005, 3406.
| Crossref | GoogleScholarGoogle Scholar |
[24] P. L. Holland, Nat. Chem. 2011, 3, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFWjt74%3D&md5=2ab257125bb1375ff1dfa7d0710dd07fCAS | 21697870PubMed |
[25] R. E. Cowley, J. Elhaik, N. A. Eckert, W. W. Brennessel, E. Bill, P. L. Holland, J. Am. Chem. Soc. 2008, 130, 6074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVChu7c%3D&md5=f5c5685cb093a48d9106985e14625181CAS | 18419120PubMed |
[26] J. A. Bellow, P. D. Martin, R. L. Lord, S. Groysman, Inorg. Chem. 2013, 52, 12335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WltLfK&md5=92ebd3827a31d37a0e5edd67e915dda7CAS | 24124899PubMed |
[27] S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards, G. J. McIntyre, Chem. Eur. J. 2010, 16, 938.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Gnuw%3D%3D&md5=026095ec6d33e9e6eae0edb85abbb116CAS | 19950340PubMed |
[28] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=5d700bcffa3d3c4d2d31273ee0f0c918CAS | 12409628PubMed |
[29] W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=9419610f4cb6fb932fb5c42cc5bcbb43CAS |
[30] G. M. Sheldrick, SHELX-97, 1997 (University of Göttingen).