Magnetic Studies of Metal Ion Coordination Clusters Encapsulated with Thiacalixarene
Rebecca O. Fuller A E , Karen L. Livesey B , Robert C. Woodward C , Allan J. McKinley A , Brian W. Skelton A D and George A. Koutsantonis AA Chemistry M310, School of Chemistry and Biochemistry, University of Western Australia, WA 6009, Australia.
B Department of Physics and UCCS Biofrontiers Center, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150, USA.
C School of Physics (M013), University of Western Australia, WA 6009, Australia.
D Current address: Centre for Microscopy, Characterisation and Analysis, University of Western Australia, WA 6009, Australia.
E Corresponding author. Email: rebecca.fuller@uwa.edu.au
Australian Journal of Chemistry 67(11) 1588-1594 https://doi.org/10.1071/CH14136
Submitted: 11 March 2014 Accepted: 23 May 2014 Published: 18 August 2014
Abstract
Three thiacalix[4]arene polynuclear complexes have been prepared by literature methods for detailed magnetic investigation. The [Fe3O(L)2] (LH4 = thiacalix[4]arene) complex is found to exhibit interesting anti-ferromagnetic exchange coupling. Jahn–Teller distortion in [Cu4(L)2] complex leads to strong anti-ferromagnetic coupling at low temperatures. The temperature-dependent susceptibility of the [(μ-H2O)Eu2(LH)2(DMF)4] complex is well described by a ground state involving the thermal population of the lowest three excited states.
References
[1] J.-B. R. de Vains, R. Lamartine, Helv. Chim. Acta 1994, 77, 1817.| Crossref | GoogleScholarGoogle Scholar |
[2] C. D. Gutsche, in Calixarenes (Ed. J. F. Stoddart) 1992 (The Royal Society of Chemistry: Cambridge).
[3] R. Roy, J. M. Kim, Angew. Chem. Int. Ed. 1999, 38, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFSqurs%3D&md5=5ed4fdc254a1941183e76e036fe6ecc4CAS |
[4] K. A. Jolliffe, P. Timmerman, D. N. Reinhoudt, Angew. Chem. Int. Ed. 1999, 38, 933.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFWqsr4%3D&md5=3d5cce11ad06915b07853348ef84f5f3CAS |
[5] F. L. Dickert, R. Sikorski, Mater. Sci. Eng., C 1999, 10, 39.
| Crossref | GoogleScholarGoogle Scholar |
[6] I. Yoshida, S. Fujii, K. Ueno, S. Shinkai, T. Matsuda, Chem. Lett. 1989, 18, 1535.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. L. Atwood, G. A. Koutsantonis, C. L. Raston, Nature 1994, 368, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivVygtLY%3D&md5=4a9d09a7a530857af2962f1a43bd14eaCAS |
[8] R. Castro, L. A. Godnez, C. M. Criss, A. E. Kaifer, J. Org. Chem. 1997, 62, 4928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVWru74%3D&md5=0fe7827c565c1c511e76c48c02c8eab9CAS |
[9] G. Karotsis, S. J. Teat, W. Wernsdorfer, S. Piligkos, S. J. Dalgarno, E. K. Brechin, Angew. Chem., Int. Ed. 2009, 48, 8285.
| 1:CAS:528:DC%2BD1MXht12htLnP&md5=39cf5f841d507fdf349e75c5034397a8CAS |
[10] G. Karotsis, S. Kennedy, S. J. Teat, C. M. Beavers, D. A. Fowler, J. J. Morales, M. Evangelisti, S. J. Dalgarno, E. K. Brechin, J. Am. Chem. Soc. 2010, 132, 12983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Whtbg%3D&md5=830aea0217014868889ceb9c2276a252CAS | 20677762PubMed |
[11] P. J. A. Kenis, O. F. J. Noordman, H. Schonherr, E. G. Kerver, B. H. M. Snellink-Ruel, G. J. Van Hummel, S. Harkema, C. P. J. M. Van Der Vorst, J. Hare, S. J. Picken, J. F. J. Engbersen, N. F. V. Hulst, G. J. Vancso, D. N. Reinhoudt, Chem. – Eur. J. 1998, 4, 1225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVamu7c%3D&md5=8f2df63c8ea707079a7e5b3e175b320aCAS |
[12] A. Bilyk, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, B. W. Skelton, A. H. White, Inorg. Chem. 2001, 40, 672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyiuw%3D%3D&md5=feeca78446795f9179594e50582e04f8CAS | 11225110PubMed |
[13] A. Bilyk, J. W. Dunlop, R. O. Fuller, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. A. Koutsantonis, I. W. Murray, B. W. Skelton, A. N. Sobolev, R. L. Stamps, A. H. White, Eur. J. Inorg. Chem. 2010, 2127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Wht7c%3D&md5=5c5df58087129e64216193f214b241efCAS |
[14] A. Bilyk, J. W. Dunlop, R. O. Fuller, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. A. Koutsantonis, I. W. Murray, B. W. Skelton, R. L. Stamps, A. H. White, Eur. J. Inorg. Chem. 2010, 2106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Whtbo%3D&md5=26aaf9fc39e82ddc34779c244f11ec4bCAS |
[15] A. Bilyk, J. W. Dunlop, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. A. Koutsantonis, B. W. Skelton, A. H. White, Eur. J. Inorg. Chem. 2010, 2089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Wht7k%3D&md5=36d2fc2a191fe80963b238496ded5cbeCAS |
[16] J. M. Harrowfield, G. A. Koutsantonis, in Calixarenes in the Nanoworld (Eds J. Vicens, J. Harrowfield, L. Baklouti) 2007, Ch 10, pp. 197–212 (Springer: Dordrecht).
[17] G. Mislin, E. Graf, M. Wais Hosseini, A. Bilyk, A. K. Hall, J. M. Harrowfield, B. W. Skelton, A. H. White, Chem. Commun. 1999, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtV2hsro%3D&md5=0189ae7f741eb1cf766bafac0b46c94bCAS |
[18] B. N. Figgis, G. B. Robertson, Nature 1965, 205, 694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXoslSkuw%3D%3D&md5=bc76464cd66a38dfc3c9b38e59013bd9CAS |
[19] G. J. Long, W. T. Robinson, W. P. Tappmeyer, D. L. Bridges, J. Chem. Soc., Dalton Trans. 1973, 573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFKqtLk%3D&md5=555e68ee3aa0a343e7528578a6e699a0CAS |
[20] K. Kambe, J. Phys. Soc. Jpn. 1950, 5, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXislSjtg%3D%3D&md5=3b0aa2846ae6f2b44a3c87422ab2acc2CAS |
[21] F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th edn 1980 (John Wiley & Sons: New York, NY).
[22] R. Bagai, S. Datta, A. Betancur-Rodriguez, K. A. Abboud, S. Hill, G. Christou, Inorg. Chem. 2007, 46, 4535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFarsLY%3D&md5=3ac7d2d3c419efcb937b66eda556a737CAS | 17455904PubMed |
[23] J. R. Pilbrow, Transition Ion Electron Paramagnetic Resonance 1990 (Oxford University Press: New York, NY).
[24] O. Kahn, Molecular Magnetism 1993 (VCH Publishers, Inc.: New York, NY).
[25] S. M. Gorun, S. J. Lippard, Inorg. Chem. 1991, 30, 1625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvFyisbc%3D&md5=661ef857baf11407f9e6cead14251e30CAS |
[26] Y. Bi, W. Liao, X. Wang, R. Deng, H. Zhang,, Eur. J. Inorg. Chem. 2009, 2009, 4989.
| Crossref | GoogleScholarGoogle Scholar |
[27] K. Xiong, F. Jiang, M. Wu, Y. Gai, Q. Chen, S. Zhang, J. Ma, D. Han, M. Hong, J. Solid State Chem. 2012, 192, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOhu7nF&md5=21bc581d5773ae773cf64c31061a275dCAS |
[28] N. Iki, Y. Yamane, N. Morohashi, T. Kajiwara, T. Ito, S. Miyano, Bull. Chem. Soc. Jpn. 2007, 80, 1132.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1CqsLc%3D&md5=e8ea5c964ffdf30dcef80b70822dfa72CAS |
[29] B. Moubaraki, K. S. Murray, J. D. Ranford, X. Wang, Y. Xu, Chem. Commun. 1998, 353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlKgsLg%3D&md5=b304a1cd676e6857bc7515f7973a19fdCAS |
[30] S. K. Hoffmann, J. Goslar, S. Lijewski, A. Zalewska, J. Magn. Reson. 2013, 236, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslajs77M&md5=cf62c5c8cf64e132fffcde3ab6f9f365CAS | 24025598PubMed |
[31] M. L. Baker, S. Piligkos, A. Bianchi, S. Carretta, D. Collison, J. J. W. Mcdouall, E. J. L. Mcinnes, H. Mutka, G. A. Timco, F. Tuna, P. Vadivelu, H. Weihe, H. U. Gudel, R. E. P. Winpenny, Dalton Trans. 2011, 40, 8533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeit7bL&md5=f7656fd9322577c9462b638d8cfd1f45CAS | 21727972PubMed |
[32] Y. Bi, X.-T. Wang, W. Liao, X. Wang, R. Deng, H. Zhang, S. Gao, Inorg. Chem. 2009, 48, 11743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhs77K&md5=5f2b6b3c90bc7bbba1f09cc7278d1c84CAS | 20000649PubMed |
[33] Y. F. Bi, G. C. Xu, W. P. Liao, S. C. Du, R. P. Deng, B. W. Wang, Chem. 2012, 55, 967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Gks70%3D&md5=79177c193ba272e08888f6103c545d90CAS |
[34] I. Korobkov, S. Gambarotta, G. P. A. Yap, L. Thompson, P. J. Hay, Organometallics 2001, 20, 5440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFalsb8%3D&md5=2971700bacdde417a6f191c8699c438eCAS |
[35] W. Liao, Y. Bi, S. Gao, D. Li, H. Zhang, R. Dronskowski, Eur. J. Inorg. Chem. 2008, 2959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVShu7w%3D&md5=54b50cbfa9141c9975419439522aa969CAS |
[36] C.-M. Liu, D.-Q. Zhang, X. Hao, D.-B. Zhu, Cryst. Growth Des. 2012, 12, 2948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlCrs7g%3D&md5=f351fb7fb814751434e8468f8fdcad06CAS |
[37] S. Sanz, R. D. Mcintosh, C. M. Beavers, S. J. Teat, M. Evangelisti, E. K. Brechin, S. J. Dalgarno, Chem. Commun. 2012, 48, 1449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFyqsA%3D%3D&md5=7431a0474f06f490420a6a1464414b6fCAS |
[38] M. Andruh, E. Bakalbassis, O. Kahn, J. C. Trombe, P. Porcher, Inorg. Chem. 1993, 32, 1616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVKhtLs%3D&md5=3eee7b7f23eb78512bc39a452cd5f9d0CAS |
[39] G. M. Sheldrick, Acta Crystallogr., Sect.A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS |