Unexpected Products from Mesoionic 1,3-Thiazinium and Oxazinium Olates: A Novel Access to 3,5-Diaryl-1,3-thiazine-2,4,6-trione and Alkoxy-3,5-diphenyl-3H-1,3-oxazine-2,6-dione Derivatives
Mahboobeh Zahedifar A and Hassan Sheibani A BA Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran.
B Corresponding author. Email: hsheibani@mail.uk.ac.ir
Australian Journal of Chemistry 67(9) 1201-1204 https://doi.org/10.1071/CH14095
Submitted: 25 February 2014 Accepted: 17 March 2014 Published: 16 April 2014
Abstract
The condensation of (chlorocarbonyl)ketenes 1 with N-phenylthiocarbamates 2 and N-phenylcarbamates 6 is postulated to lead to the formation of unstable mesoionic 1,3-thiazinium 4-olates I or 1,3-oxazinium 4-olates II, respectively. At room temperature, appropriately substituted mesoionic 1,3-thiazinium 4-olates I eliminated the corresponding alkene with generation of 3,5-diaryl-1,3-thiazine-2,4,6-trione derivatives 3. However, the methoxy-substituted compound 5 was stable at room temperature at least for several weeks. In the case of the mesoionic1,3-oxazinium 4-olates II an alkyl group migration affords 4-alkoxy-3,5-diphenyl-3H-1,3-oxazine-2,6-diones 7.
References
[1] (a) The following 1882 paper by Fischer and Besthorn can be considered as the first description of a mesoionic compound, although the structures of mesoionic compounds were not fully understood until the 1946 paper by Baker and Ollis: E. Fischer, E. Besthorn, Liebigs Ann. Chem. 1882, 212, 316.| Crossref | GoogleScholarGoogle Scholar |
(b) W. Baker, W. D. Ollis, Nature 1946, 158, 703.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. C. Earl, Nature 1946, 158, 910.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Baker, W. D. Ollis, V. D. Poole, J. Chem. Soc. 1949, 307.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. N. Veedu, D. Kvaskoff, C. Wentrup, Aust. J. Chem. 2014, 67, 457.
| Crossref | GoogleScholarGoogle Scholar |
[2] B. F. Lyra, S. A. de Morais, G. B. Rocha, J. Miller, G. L. C. Moura, A. M. Simas, C. Peppe, P. F. de Athayde-Filho, J. Braz. Chem. Soc. 2010, 21, 934.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. Hamaguchi, N. Tomida, E. Mochizuki, T. Oshima, Tetrahedron Lett. 2003, 44, 7945.
| Crossref | GoogleScholarGoogle Scholar |
[4] W. D. Ollis, S. P. Stanforth, C. A. Ramsden, Tetrahedron 1985, 41, 2239.
| Crossref | GoogleScholarGoogle Scholar |
[5] H. Gotthardt, K. H. Schenk, Tetrahedron Lett. 1983, 24, 4669.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. Sheibani, P. V. Bernhardt, C. Wentrup, J. Org. Chem. 2005, 70, 5859.
| Crossref | GoogleScholarGoogle Scholar | 16018678PubMed |
[7] C. Wentrup, W. Heilmayer, G. Kollenz, Synthesis 1994, 1994, 1219.
| Crossref | GoogleScholarGoogle Scholar |
[8] L. George, R. N. Veedu, H. Sheibani, A. A. Taherpour, R. Flammang, C. Wentrup, J. Org. Chem. 2007, 72, 1399.
| Crossref | GoogleScholarGoogle Scholar | 17253756PubMed |
[9] G. A. Eller, W. Holzer, Molecules 2007, 12, 60.
| Crossref | GoogleScholarGoogle Scholar |
[10] H. Sheibani, M. R. Islami, H. Khabazzadeh, K. Saidi, Tetrahedron 2004, 60, 5931.
| Crossref | GoogleScholarGoogle Scholar |
[11] H. Sheibani, M. H. Mosslemin, S. Behzadi, M. R. Islami, H. Foroughi, K. Saidi, ARKIVOC 2005, 2005, 88.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Abaszadeh, H. Sheibani, K. Saidi, J. Heterocycl. Chem. 2009, 46, 96.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Sheibani, M. Zahedifar, Heterocycles 2009, 78, 1015.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. Abaszadeh, H. Sheibani, K. Saidi, Aust. J. Chem. 2010, 63, 92.
| Crossref | GoogleScholarGoogle Scholar |
[15] D. Cantillo, H. Sheibani, C. O. Kappe, J. Org. Chem. 2012, 77, 2463.
| Crossref | GoogleScholarGoogle Scholar | 22321044PubMed |
[16] T. Besson, M. D. Dozias, J. Guillard, P. Jacquault, M. D. Legoy, C. W. Rees, Tetrahedron 1998, 54, 6475.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Nakanishi, K. Butler, Org. Prep. Proced. Int. 1975, 7, 155.
| Crossref | GoogleScholarGoogle Scholar |