Synthesis of Steroid–Porphyrin Conjugates from Oestradiol, Oestrone, and Lithocholic Acid*
Fargol Taba A , Tze Han Sum A , Paul J. Sintic A , Ann H. Lundmark A and Maxwell J. Crossley A BA School of Chemistry, The University of Sydney, NSW 2006, Australia.
B Corresponding author. Email: maxwell.crossley@sydney.edu.au
Australian Journal of Chemistry 67(11) 1632-1645 https://doi.org/10.1071/CH14080
Submitted: 17 February 2014 Accepted: 21 March 2014 Published: 26 May 2014
Abstract
The synthesis of porphyrin–steroid conjugates is examined using the natural steroids oestradiol, oestrone, and lithocholic acid as precursors. Two strategies differing in the timing of formation of the steroid–porphyrin linkage leading to four different construction motifs are explored. Two approaches are based on a strategy of introduction of steroidal components in the porphyrin-forming reaction involving condensation of steroidal-alkylaldehydes and pyrrole to give 5,10,15,20-tetrakis(steroidal-alkyl)porphyrins and differ in the way in which the required aldehyde is introduced to the steroidal component. In the other strategy, a steroidal component is introduced by post-porphyrin synthesis reactions and here also two approaches were explored, one involving nucleophilic substitution and the other esterification. Of the four approaches investigated, the most efficient and most versatile one attaches the steroidal components late in the sequence to a 5,10,15,20-tetra(ω-haloalkyl)porphyrin by a nucleophilic substitution reaction. In this way, a 5,10,15,20-tetrakis[oestrone-linked-heptyl)porphyrin was obtained in 47 % yield.
References
[1] P. Wallimann, T. Marti, A. Furer, F. Diederich, Chem. Rev. 1997, 97, 1567.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksV2kurg%3D&md5=72fc66864fc126b20ac838a510e6f323CAS | 11851459PubMed |
[2] H. A. Zhylitskaya, V. N. Zhabinskii, R. P. Litvinovskaya, R. Lettieri, D. Monti, M. Venanzi, V. A. Khripach, P. Drasar, Steroids 2012, 77, 1169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kku7vO&md5=2e5e7d91d6355738bc9b6f1f92b73c73CAS | 22824291PubMed |
[3] M. Dukh, D. Saman, K. Lang, V. r. Pouzar, I. Cerný, P. Drasar, V. r. Král, Org. Biomol. Chem. 2003, 1, 3458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFGkurs%3D&md5=e5571096d743a16d5a2f98b48da48cadCAS | 14584811PubMed |
[4] T. S. Balaban, N. Berova, C. M. Drain, R. Hauschild, X. Huang, H. Kalt, S. Lebedkin, J.-M. Lehn, F. Nifaitis, G. Pescitelli, V. I. Prokhorenko, G. Riedel, G. Smeureanu, J. Zeller, Chem. Eur. J. 2007, 13, 8411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alsLzI&md5=355a86daa3c11dac34d95a86dd70168aCAS | 17645286PubMed |
[5] R. Lettieri, D. Monti, K. Zelenka, T. Trnka, P. Drasar, M. Venanzi, New J. Chem. 2012, 36, 1246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVGhs7w%3D&md5=d9bd2762a7dc5b55129852f0937f21feCAS |
[6] E. Girgenti, R. Ricoux, J.-P. Mahy, Tetrahedron 2004, 60, 10049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFagt7s%3D&md5=cf888f013b28917261c3a9d8a3928b4bCAS |
[7] C. S. Blesson, L. Sahlin, Mol. Cell. Endocrinol. 2012, 361, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFKlsbc%3D&md5=c67761acda3655ae57f04909b215277dCAS | 22554835PubMed |
[8] F. Buttgereit, Z. Rheumatol. 2000, 59, 119.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. K. Shanle, W. Xu, Adv. Drug Deliv. Rev. 2010, 62, 1265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGitr%2FN&md5=d6af91c4749d86760d6a8cf145186b45CAS | 20708050PubMed |
[10] T. H. Nguyen Thi, L. Cardova, M. Dvorakova, D. Rockova, P. Drasar, Steroids 2012, 77, 858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFKktLc%3D&md5=09342df16d24705499d968e389502135CAS |
[11] A. E. Hargrove, R. N. Reyes, I. Riddington, E. V. Anslyn, J. L. Sessler, Org. Lett. 2010, 12, 4804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2nu7bO&md5=0a476785e7c6bfc1988fc6d74af541a1CAS | 20860384PubMed |
[12] J. L. Sessler, E. Karnas, E. Sedenberg, Supramol. Chem. 2012, 3, 1045.
| 1:CAS:528:DC%2BC38XltlGqs7Y%3D&md5=1d7b125528a7c6d11c458bdfaf1c81c0CAS |
[13] E. W. Sugandhi, C. Slebodnick, J. O. Falkinham, R. D. Gandour, Steroids 2007, 72, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFKht78%3D&md5=a07119627e72e07b33ab56a4a49f6b47CAS | 17532019PubMed |
[14] S. Gao, Q. Wang, L. J.-S. Huang, L. Lum, C. Chen, J. Am. Chem. Soc. 2010, 132, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektrfN&md5=81bebf85e9f1ce965277a7e54e4144deCAS | 20000429PubMed |
[15] E. Virtanen, E. Kolehmainen, Eur. J. Org. Chem. 2004, 3385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVKhtr8%3D&md5=6383a06fd566f6da67e9880cc4a71e56CAS |
[16] N. Swamy, D. A. James, S. C. Mohr, R. N. Hanson, R. Ray, Bioorg. Med. Chem. 2002, 10, 3237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVemsbs%3D&md5=8a7d302f64c872ce56d6d9159ac27329CAS | 12150869PubMed |
[17] E. H. Khan, H. Ali, H. Tian, J. Rousseau, G. Tessier, Shafiullah, J. E. van Lier, Bioorg. Med. Chem. Lett. 2003, 13, 1287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlKjsLo%3D&md5=2f3a56e16d86c8bf86eadc6b61b3925fCAS | 12657265PubMed |
[18] E. Sansiaume, R. Ricoux, D. Gori, J.-P. Mahy, Tetrahedron Asymmetry 2010, 21, 1593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Cntrg%3D&md5=bf011c956f8976d5baf47a9a536331d1CAS |
[19] J. W. Bats, G. Haake, A. Meier, F.-P. Montforts, G. Scheurich, Liebigs Ann. 1995, 1995, 1617.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. J. Crossley, P. Thordarson, J. P. Bannerman, P. J. Maynard, J. Porphyr. Phthalocyanines 1998, 2, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVyrtrs%3D&md5=cd3b8e701cb9f321f31007c95ba1a7eaCAS |
[21] J. S. Lindsey, in The Porphyrin Handbook (Eds K. M. Kadish, K. M. Smith, R. Guilard) 2000, Vol. 1, Ch. 2, pp. 45–118 (Academic Press: San Diego, CA).
[22] P. C. Bulman Page, J. P. G. Moore, I. Mansfield, M. J. McKenzie, W. B. Bowler, J. A. Gallagher, Tetrahedron 2001, 57, 1837.
| Crossref | GoogleScholarGoogle Scholar |
[23] P. Ciuffreda, S. Casati, A. Manzocchi, Magn. Reson. Chem. 2004, 42, 360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVWgu74%3D&md5=4a6ece363aee63807f0d0cfb0d05d5b7CAS | 14971022PubMed |
[24] M. J. Crossley, M. M. Harding, S. Sternhell, J. Am. Chem. Soc. 1986, 108, 3608.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xks1Sht74%3D&md5=79946862ece31c85148cec74a79b5513CAS |
[25] C. B. Storm, Y. Teklu, J. Am. Chem. Soc. 1972, 94, 1745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtFansLY%3D&md5=0a8d1acccb076765d2e18636f7899644CAS | 5015678PubMed |
[26] M. J. Crossley, L. D. Field, M. M. Harding, S. Sternhell, J. Am. Chem. Soc. 1987, 109, 2335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvFKisr8%3D&md5=542de807d22ec1ba49316bf65a9c0d11CAS |
[27] J. R. Reimers, T. X. Lue, M. J. Crossley, N. S. Hush, J. Am. Chem. Soc. 1995, 117, 2855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFegt7Y%3D&md5=abe49f1918e508edc083e7d0a63e7989CAS |
[28] K. J. Cross, M. J. Crossley, Aust. J. Chem. 1992, 45, 991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFWgtrY%3D&md5=3e60cd3c4d7ac3fc99624c09592f852dCAS |
[29] J. W. Blunt, J. B. Stothers, Org. Magn. Reson. 1977, 9, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtlKrsbk%3D&md5=e0baddcdad82a67a799e02d37db6c5d4CAS |
[30] V. Boucheau, M. Renaud, M. R. de Ravel, E. Mappus, C. Y. Cuilleron, Steroids 1990, 55, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFWks7k%3D&md5=955ff809674b673470db5d702e5076c1CAS | 2163125PubMed |
[31] M. Marino, P. Galluzzo, Cancer Ther. 2008, 6, 149.
| 1:CAS:528:DC%2BD1cXht1Kgtr%2FF&md5=b48f5523235f651fd234a6ff6d72fab3CAS |
[32] M. Dukh, P. Drasar, I. Cerný, V. Pouzar, J. A. Shriver, V. r. Král, J. L. Sessler, Supramol. Chem. 2002, 14, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVGns7s%3D&md5=f569a7e36efd32592c9a45b162886af4CAS |
[33] M. W. Reed, E. Lukhtanov, V. Gorn, D. D. Lucas, J. H. Zhou, S. B. Pai, Y.-C. Cheng, R. B. Meyer, J. Med. Chem. 1995, 38, 4587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosV2qsLg%3D&md5=ab539277f9228fbcd17bb599f5542185CAS | 7473587PubMed |
[34] P. S. Chae, S. G. F. Rasmussen, R. R. Rana, K. Gotfryd, A. C. Kruse, A. Manglik, K. H. Cho, S. Nurva, U. Gether, L. Guan, C. J. Loland, B. Byrne, B. K. Kobilka, S. H. Gellman, Chem. Eur. J. 2012, 18, 9485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFaqur0%3D&md5=39a38d2c3712d2acc2f3b65e6b973601CAS | 22730191PubMed |
[35] Y. Ono, A. Kawase, H. Watanabe, A. Shiraishi, S. Takeda, Y. Higuchi, K. Sato, T. Yamauchi, T. Mikami, M. Kato, N. Tsugawa, T. Okano, N. Kubodera, Bioorg. Med. Chem. 1998, 6, 2517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVKhsg%3D%3D&md5=f0614932b13dd11040bb68ecfd9544efCAS | 9925307PubMed |
[36] B. Eignerová, M. Dračínský, M. Kotora, Eur. J. Org. Chem. 2008, 4493.
| Crossref | GoogleScholarGoogle Scholar |
[37] D. Savoia, C. Trombini, A. Umani-Ronchi, J. Org. Chem. 1982, 47, 564.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xlt1Snuw%3D%3D&md5=83e2df90847d61c8fb73c50d4dfdc6f0CAS |
[38] X. Qian, Y. J. Abul-Hajj, J. Steroid Biochem. 1988, 29, 657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVaksL4%3D&md5=83c6716d9b5566f949b6e6e76e0cb34bCAS | 3386232PubMed |
[39] R. K. Jain, A. D. Hamilton, Org. Lett. 2000, 2, 1721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlygtbY%3D&md5=5b77092a006ecd050759f3e61579f074CAS | 10880210PubMed |
[40] S. N. Gradl, J. P. Felix, E. Y. Isacoff, M. L. Garcia, D. Trauner, J. Am. Chem. Soc. 2003, 125, 12668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFyqs7Y%3D&md5=d63800abee2a8f04843d774d95be8f85CAS | 14558789PubMed |
[41] R. D. Youssefyeh, Y. Mazur, Chem. Ind. (London) 1963, 609.
| 1:CAS:528:DyaF3sXotFOmsQ%3D%3D&md5=c3a071d87f06c1caefdefbbb89e00342CAS |
[42] J. D. Pelletier, D. Poirier, Tetrahedron Lett. 1994, 35, 1051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVelsLc%3D&md5=d76ca7e260e5930700862486fd202190CAS |
[43] Y. Amao, Y. Yuriko, Biosens. Bioelectron. 2007, 22, 1561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVOqsw%3D%3D&md5=84651c1fabbb926a60ced6d1ddd2c6e8CAS | 16930984PubMed |
[44] C. Martelli, J. Canning, T. Khoury, N. Skivesen, M. Kristensen, G. Huyang, P. Jensen, C. Neto, T. J. Sum, M. B. Hovgaard, B. C. Gibson, M. J. Crossley, J. Mater. Chem. 2010, 20, 2310.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVChur8%3D&md5=a324194d0de0db726d760b698ea53444CAS |
[45] M. H. Stenzel, Chem. Commun. 2008, 3486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovV2lurg%3D&md5=ed008fb629fabd0b8fd02dede6bc76d0CAS |
[46] D. A. Roberts, M. J. Crossley, T. W. Schmidt, S. Perrier, Chem. Eur. J. 2013, 19, 12759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CktbfL&md5=df69f853e2839ca15befb8877245a051CAS | 23939811PubMed |
[47] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals (Sixth Edition) 2009 (Butterworth-Heinemann: Oxford, UK).