‘Green’ Synthesis of 2-Substituted 6-Hydroxy-[3H]-pyrimidin-4-ones and 4,6-Dichloropyrimidines: Improved Strategies and Mechanistic Study*
Andreas Opitz A C , Werner Sulger A , Ewald Daltrozzo A and Rainer Koch BA Department of Chemistry, University of Konstanz, Universitätsstr. 10, D-78457 Konstanz, Germany.
B Institut of Chemistry and Center for Interface Science, University Oldenburg, PO Box 2503, D-26111 Oldenburg, Germany.
C Corresponding author. Email: andreasc.opitz@t-online.de
Australian Journal of Chemistry 68(5) 814-824 https://doi.org/10.1071/CH14073
Submitted: 14 February 2014 Accepted: 5 August 2014 Published: 13 November 2014
Abstract
An improved route to 2-substituted 6-hydroxy-[3H]-pyrimidin-4-ones 4 and to 2-substituted 4,6-dichloropyrimidines 5 is reported. Without using highly toxic reactants, compounds 4 can be prepared conveniently in a one pot synthesis on a one mol scale with average yields up to 80 %. 4,6-Dichloropyrimidines 5, which are usually prepared in small quantities, are synthesized with average yields of 80 %, using up to 80 g of starting material. The mechanism of the chlorination of 4 is investigated computationally for the first time. The results suggest that the chlorination with phosphoryl chloride occurs in an alternating phosphorylation–chlorination manner (pathway 1) which is preferred over a sequence which starts with two phosphorylations. The investigated 4,6-dichloropyrimidines described herein form strong complexes with dichlorophosphoric acid but weak complexes with hydrochloric acid (generated during workup). These latter complexes explain the necessity of using aqueous sodium carbonate during the working up. In order to prevent possible formation of pyrimidinium salts between intermediates or the final dichloropyrimidines and unreacted hydroxypyrimidone, the latter could be deactivated with a strong acid such as dichlorophosphoric acid, thus allowing chlorination but prohibiting salt formation. Because of its general applicability to all nitrogen heterocycle chlorinations with phosphoryl chloride, the proposed route to dichloropyrimidines without solvent or side products, using less toxic reactants, is of general synthetic interest.
References
[1] (a) W. Sulger, Synthese und Spektroskopische Eigenschaften Neuartiger Fluoreszenzfarbstoffe der Polymethinreihe 1981, Ph.D. thesis, University of Konstanz, Germany.(b) D. Samson, Synthese und spektroskopische Untersuchung von Diheteroarylaminen und ihren Borchelatkomplexen 2009, Ph.D. thesis, University of Konstanz, Germany.
(c) D. Samson, E. Daltrozzo, Helv. Chem. Acta 2011, 94, 46.
| Crossref | GoogleScholarGoogle Scholar |
[2] K. Burdeska, H. Fuhrer, G. Kabas, A. E. Siegrist, Helv. Chim. Acta 1981, 64, 113.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, 1995, p. 121, 159, and 161 (VCH: Weinheim).
[4] S. Hanan, J. M. Lehn, N. Kyritsakas, J. Fischer, J. Chem. Soc. Chem. Commun. 1995, 765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltFSju78%3D&md5=7ae164845773a3b1b71c83b8794c7c63CAS |
[5] Nucleic Acids in Chemistry and Biology, 2nd edn (Eds G. M. Blackburn, M. J. Gait) 1996 (Oxford University Press: Oxford).
[6] (a) M. Meguro, T. Oda, Y. Nakagami, S. Marumoto, K. Koyama, I. Kaneko, Sankyo Company, US Patent 20080182846 A1 2008.
(b) M. Bös, A. J. Sleigth, T. Godel, J. R. Martin, C. Riemer, H. Stadler, Eur. J. Med. Chem. 2001, 36, 165.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Flore, M. A. Marcialis, M. E. Marongiu, R. Pompei, P. La Colla, B. Loddo, Experientia 1977, 33, 1155.
| Crossref | GoogleScholarGoogle Scholar |
[7] A. J. Whitton, D. J. Ritchie, E. C. Boyd, R. V. H. Jones, US Patent 6 018 045 2006.
[8] (a) J. F. Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls12lsbY%3D&md5=31d0791870705d09d58dceb945867ddeCAS |
(b) J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc. Chem. Res. 1998, 31, 805.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 2000, 65, 1144.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. A. Hendry, R. F. Homer, J. Chem. Soc. 1952, 328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XlslamsA%3D%3D&md5=621f2f531f08f8ddc8bf44a353b15d30CAS |
[10] (a) H. R. Henze, O. S. Winthrop, J. Am. Chem. Soc. 1957, 79, 2230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXntFGjtg%3D%3D&md5=c224982f056128d77787ff9234d9fc95CAS |
(b) H. Gershon, R. Braun, A. Scala, R. Rodin, J. Med. Chem. 1964, 7, 808.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) D. J. Brown, T. Teitei, J. Chem. Soc. 1964, 3204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXks1yksr4%3D&md5=afa5b27a4e761be2be0835283aea4a29CAS |
(b) D. J. Brown, P. Waring, Aust. J. Chem. 1977, 30, 1785.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Baddiley, B. Lythgoe, A. R. Todd, J. Chem. Soc. 1943, 386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3sXkt1anuw%3D%3D&md5=31f57c726a241dae81f0e5204ec7594bCAS |
[13] H. Schubert, H. Zaschke, J. Prakt. Chem. 1970, 312, 494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvFyru74%3D&md5=bd1dd297ba75e38f325e59d6dfb07943CAS |
[14] A. W. Dox, F. C. Whitmore, in Organic Synthesis, Collective Volume 1 (Eds H. Gilman, A. H. Blatt) 2nd edn 1964, p. 5 (Wiley: New York, NY).
[15] H. Neunhoeffer, F. Weischedel, Liebigs Ann. Chem. 1971, 749, 16.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlt12ktb0%3D&md5=263ebf0294335091e00ea020b587f5a6CAS |
[16] R. Hull, J. Chem. Soc. 1951, 2214.
| 1:CAS:528:DyaG38XlsFGm&md5=0e8d00a308e4da952bf54dde88ea4215CAS |
[17] G. Cramm, V. Käss, G. Steffan, US Patent 5 677 453 1997.
[18] H. Wang, K. Wen, Y. Xiang, Y. Shen, Z. Sun, Molecules 2012, 17, 4533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmtl2jsro%3D&md5=287a407ca8082020f883ac91f5ef6f73CAS | 22508333PubMed |
[19] C. Huber, K. Fähnrich, C. Krause, T. Werner, J. Photochem. Photobiol., A 1999, 128, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVyqt78%3D&md5=84a982e6dfde18dd97699788e6839301CAS |
[20] See p. 120 in J. A. Joule, K. A. Mills, Heterocyclic Chemistry, 5th edn 2010 (J. Wiley & Sons: Chichester).
[21] W. Dymek, R. Zimon, Acta Pol. Pharm. 1968, 25, 221.
| 1:CAS:528:DyaF1MXjslOltg%3D%3D&md5=f6f05ee34a9d080eb8bb7c9ecc35bd15CAS | 5680555PubMed |
[22] (a) P. J.-M. B. Raboisson, A. K. G. L. Belfrage, B. O. Classon, K. C. Lindquist, K. M. Nilsson, A. A. K. Rosenquist, B. B. Samuelsson, H. J. Waehling, WO2008/095999 A1 2008.
(b) D. D. Davey, G. B. Phillips, U.S. Patent 6 372 751 B1 2002.
[23] A. R. Katritzky, F. D. Popp, A. J. Waring, Chem. Soc. (B) 1966, 565,
[24] (a) G. M. Fischer, A. P. Ehlers, A. Zumbusch, E. Daltrozzo, Angew. Chem. Int. Ed. 2007, 46, 3750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFOntr4%3D&md5=a351695943ac60b6a57a56c543e4df29CAS |
(b) G. M. Fischer, E. Daltrozzo, A. Zumbusch, Angew. Chem. Int. Ed. 2011, 50, 1406.
| Crossref | GoogleScholarGoogle Scholar |
[25] Alternative transition states containing six-membered rings either lie higher in energy or could not be found. The main role of the additional POCl3 is not to facilitate a particular transition state structure but to stabilize (‘solvate’) all molecules herein.
[26] The addition of more explicit solvent molecules should further reduce the required activation barriers, although to a lesser extent than the first one.
[27] (a) E. Anders, A. Opitz, W. Bauer, Synthesis 1991, 1221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVKjt78%3D&md5=2cdf6603dda1ee1cb61d326a8bd4c29eCAS |
(b) A. Opitz, Präparative und theoretische Untersuchungen zur Struktur und Reaktivität seitenkettenmetallierter aromatischer Stickstoffheterocyclen 1993, Ph.D. thesis, University Erlangen-Nürnberg, Germany.
(c) E. Anders, U. Korn, A. Stankowiak, Chem. Ber. 1989, 122, 105.
| Crossref | GoogleScholarGoogle Scholar |
[28] G. M. Sheldrick, SHELX-2013: Program for the Determination of Crystal Structures 2014 (University of Göttingen: Göttingen).
[29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Rev. B01 2009 (Gaussian, Inc.: Wallingford, CT).
[30] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
[31] (a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFOiuw%3D%3D&md5=d6d8c4ff635808d8fc8f495692273ba4CAS |
(b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
| Crossref | GoogleScholarGoogle Scholar |
[32] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=78694ab799c17471eb4f1547406dfe71CAS |
[33] (a) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCnu7c%3D&md5=2fc5ec2e2af92c57312f477033b12a27CAS |
(b) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsVKis7s%3D&md5=eb771a04a45b1ea1793afb9d6e9d817eCAS |
(b) S. Miertus, J. Tomasi, Chem. Phys. 1982, 65, 239.
| Crossref | GoogleScholarGoogle Scholar |