Lanthanide-Based Polymers with Charged Ligand Backbones: Triple-Stranded Chain Structures and their DNA Cleavage Studies
Ming Chen A , Xiao-Yan Tang B , Ming-Zhen Chen A , Jin-Xiang Chen A C and Wen-Hua Chen A CA School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
B Department of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, China.
C Corresponding author. Email: jxchen@smu.edu.cn, whchen@smu.edu.cn
Australian Journal of Chemistry 68(3) 493-499 https://doi.org/10.1071/CH14025
Submitted: 7 March 2014 Accepted: 1 July 2014 Published: 22 September 2014
Abstract
Four rare-earth metal complexes, [Ln(Ccbp)3(H2O)3]n (Ln = La (1), Ce (2), Pr (3) and Nd (4)) are synthesised from the ligand H2CcbpBr (H2CcbpBr = 4-carboxy-1-(4-carboxybenzyl)pyridinium bromide) and the respective lanthanide metal ions. Complexes 1–4 are isostructural in that every three Ccbp– ligands juxtapose two Ln3+ ions in a monodentate coordination mode to form triple-stranded one-dimensional chain structures. Each central Ln3+ atom further associates with three H2O molecules, furnishing a monocapped square-antiprism geometry. Agarose gel electrophoresis studies indicate that 1–4 are capable of cleaving DNA in the presence of H2O2, most probably via an oxidative cleavage mechanism. Complexes 1 and 2 exhibited catalytic efficiencies (kmax/KM) of 37.69 and 34.11 h–1 mM–1, and are approx. 15- and 20-fold more effective than those of complexes 3 (kmax/KM = 1.75 h–1 mM–1) and 4 (kmax/KM = 2.21 h–1 mM–1).
References
[1] B. Y. Wu, L. H. Gao, Z. M. Duan, K. Z. Wang, J. Inorg. Biochem. 2005, 99, 1685.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVCqu74%3D&md5=678084c8c8fcd853d5c9e362565be228CAS | 16005071PubMed |
[2] Y. G. Sun, W. Yu, S. T. Wang, S. T. Rong, Y. L. Wu, M. C. Zhu, E. J. Gao, Russ. J. Coord. Chem. 2010, 36, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVyhtw%3D%3D&md5=c74b9dc0373e291762a84f30379c5ba6CAS |
[3] N. Mohan, S. H. Patel, B. P. Pramod, Med. Chem. Res. 2011, 20, 1372.
[4] L. Z. Li, J. F. Dong, J. H. Li, B. Q. Jing, D. Q. Wang, Transition Met. Chem. 2011, 36, 289.
| Crossref | GoogleScholarGoogle Scholar |
[5] Y. J. Liu, Z. H. Liang, Z. Z. Li, C. H. Zeng, J. H. Yao, H. L. Huang, F. H. Wu, Biometals 2010, 23, 739.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslWqtL8%3D&md5=9c723633590d2a3b25f0f55606ac0202CAS | 20422275PubMed |
[6] S. M. Hecht, J. Nat. Prod. 2000, 63, 158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVOmt7s%3D&md5=39727b146f7027da3e0ce3aee416f6daCAS | 10650103PubMed |
[7] J. Kluza, B. Baldeyrou, P. Colson, P. Rasoanaivo, L. Mambu, F. Frappier, C. Bailly, Eur. J. Pharm. Sci. 2003, 20, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlynurs%3D&md5=f8ff4c832f4841fd5b5509db4dbaa34eCAS | 14659482PubMed |
[8] H. Cheng, F. Huq, P. Beale, K. Fisher, Eur. J. Med. Chem. 2006, 41, 896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFelt7o%3D&md5=4ba259551829061f6cb50e46e8d3b771CAS | 16730394PubMed |
[9] Y. B. Zeng, N. Yang, W. S. Liu, N. Tang, J. Inorg. Biochem. 2003, 97, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKltLY%3D&md5=5a5520b988ed8901983da79d996dbc27CAS | 14511888PubMed |
[10] S. S. Bhat, A. A. Kumbhar, H. Heptullah, A. A. Khan, V. V. Gobre, S. P. Gejji, V. G. Puranik, Inorg. Chem. 2011, 50, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGltb7M&md5=e1c8335f542e31347797b64138e67894CAS | 21155539PubMed |
[11] A. Mishra, S. Ravikumar, S. H. Hong, H. Kim, V. Vajpayee, H. W. Lee, B. C. Ahn, M. Wang, P. J. Stang, K. W. Chi, Organometallics 2011, 30, 6343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGkt7vJ&md5=9a38954b2dbcf8c2f720ca93d2d5a7eaCAS | 22180697PubMed |
[12] T. K. Goswami, B. V. S. K. Chakravarthi, M. Roy, A. A. Karande, A. R. Chakravarty, Inorg. Chem. 2011, 50, 8452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVOiu74%3D&md5=6b3d7b793e18361ab479e6cd7c3bdbacCAS | 21797197PubMed |
[13] T. Bortolotto, P. P. Silva, A. Neves, E. C. Pereira-Maia, H. Terenzi, Inorg. Chem. 2011, 50, 10519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KktbrN&md5=c37a506559467bc33e0754745e6fba05CAS | 21970295PubMed |
[14] L. Tjioe, A. Meininger, T. Joshi, L. Spiccia, B. Graham, Inorg. Chem. 2011, 50, 4327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVCksrg%3D&md5=eebd8e6f3ca200cd5ffa51118b7c9d09CAS | 21504219PubMed |
[15] G. J. Chen, X. Qiao, J. L. Tian, J. Y. Xu, W. Gu, X. Liu, S. P. Yan, Dalton Trans. 2010, 39, 10637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKmsLjI&md5=fdb9e04a3b3888c51fb6285a7cecdc82CAS | 20922220PubMed |
[16] A. Hussain, D. Lahiri, M. S. A. Begum, S. Saha, R. Majumdar, R. R. Dighe, A. R. Chakravary, Inorg. Chem. 2010, 49, 4036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVKlsbg%3D&md5=b33a43bd03acb3c533f65fb5d2c9dec3CAS | 20380391PubMed |
[17] J. F. Nicola, S. Luca, J. S. Peter, Dalton Trans. 2009, 10690.
[18] M. K. Johansson, R. M. Cook, J. Xu, K. N. Raymond, J. Am. Chem. Soc. 2004, 126, 16451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCisb7P&md5=edf37a1106095211118c8eb74d541da3CAS | 15600347PubMed |
[19] S. J. Franklin, Curr. Opin. Chem. Biol. 2001, 5, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1WksL0%3D&md5=633252933705da1603c9b0ba71f85c92CAS | 11282348PubMed |
[20] D. Xu, Y. Xu, N. Cheng, X. Zhou, Y. Shi, Q. He, J. Coord. Chem. 2010, 63, 2360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSksrrF&md5=68ddccb2ec234600d66e626e2d11b78eCAS |
[21] S. V. Eliseeva, J. C. G. Bunzli, Chem. Soc. Rev. 2010, 39, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrrK&md5=714b70a95b38555292b3f7aa97fa64cfCAS | 20023849PubMed |
[22] P. Hermann, J. Kotek, V. Kubicek, I. Lukes, Dalton Trans. 2008, 3027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1yht7Y%3D&md5=5d12b53b2c52505b5587a06ddea1ad74CAS | 18521444PubMed |
[23] M. Chen, M.-Z. Chen, C.-Q. Zhou, W.-E. Lin, J.-X. Chen, W.-H. Chen, Z.-H. Jiang, Inorg. Chim. Acta 2013, 405, 461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlyktLY%3D&md5=acdaf217bf15da444806d4525a49f0bfCAS |
[24] E. G. Heckert, S. Seal, T. S. William, Environ. Sci. Technol. 2008, 42, 5014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFWgsrk%3D&md5=7b026b4d02e1e20f7cf411909d68bc48CAS | 18678042PubMed |
[25] P. A. N. Reddy, B. K. Santra, M. Nethaji, A. R. Chakravarty, J. Inorg. Biochem. 2004, 98, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVyksg%3D%3D&md5=92d1e53343011c91f4212effcdc38682CAS |
[26] L. Tjioe, T. Joshi, J. Brugger, B. Graham, L. Spiccia, Inorg. Chem. 2011, 50, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFClurvE&md5=6c5f28380c7b8cc5780273732d5fff30CAS | 21142006PubMed |
[27] S. Rajalakshmi, T. Weyhermüller, A. J. Freddy, H. R. Vasanthi, B. U. Nair, Eur. J. Med. Chem. 2011, 46, 608.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVahsw%3D%3D&md5=ec3304b3cdd4b602017eaa066b867c27CAS | 21193251PubMed |
[28] S. S. Bhat, A. A. Kumbhar, H. Heptullah, A. A. Khan, V. V. Gobre, S. P. Gejji, V. G. Puranik, Inorg. Chem. 2011, 50, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGltb7M&md5=e1c8335f542e31347797b64138e67894CAS | 21155539PubMed |
[29] T. K. Goswami, B. V. S. K. Chakravarthi, M. Roy, A. A. Karande, A. R. Chakravarty, Inorg. Chem. 2011, 50, 8542.
[30] V. Rajendiran, R. Karthik, M. Palaniandavar, H. Stoeckli-Evans, V. S. Periasamy, M. A. Akbarsha, B. S. Srinag, H. Krishnamurthy, Inorg. Chem. 2007, 46, 8208.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVygurk%3D&md5=9d51dfa0e82d9e41aa041cbf2ce418daCAS | 17784750PubMed |
[31] Y. Shao, J. Y. Zhang, C. Tu, C. H. Dai, Q. Xu, Z. J. Guo, J. Inorg. Biochem. 2005, 99, 1490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFartbg%3D&md5=c8db01794ab63bc8ad1a2548fa77a0e5CAS | 15919117PubMed |
[32] J. H. Kwon, H. J. Park, N. Chitrapriya, T. S. Cho, S. Kim, J. Kim, I. H. Hwang, C. Kim, S. K. Kim, J. Inorg. Biochem. 2014, 131, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWnt7rO&md5=7346ec4b8f318beaf275eee9eb59d2fdCAS | 24280340PubMed |
[33] P. P. Netalkar, S. P. Netalkar, S. Budagumpi, V. K. Revankar, Eur. J. Med. Chem. 2014, 79, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFWgurc%3D&md5=b89968e5c17ea038178edc3b2c090be8CAS | 24721314PubMed |
[34] J.-X. Chen, W.-E. Lin, M.-Z. Chen, C.-Q. Zhou, Y.-L. Lin, M. Chen, Z.-H. Jiang, W.-H. Chen, Bioorg. Med. Chem. Lett. 2012, 22, 7056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjtrnK&md5=ce657c9a2d90f4a66ca9c95128bf5f25CAS | 23084896PubMed |
[35] C.-Q. Zhou, Y.-L. Lin, J.-X. Chen, L.-S. Wang, N.-N. Yang, W. Zeng, W.-H. Chen, Bioorg. Med. Chem. Lett. 2012, 22, 5853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOmtrnP&md5=3580e6b9fd1922a795e695b2c59f8831CAS | 22884990PubMed |
[36] C.-Q. Zhou, Y.-L. Lin, J.-X. Chen, W.-H. Chen, Chem. Biodivers. 2012, 9, 1125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1SlsL0%3D&md5=22e4020bdf02091b97251aeb66dc044cCAS | 22700230PubMed |
[37] J.-X. Chen, W.-E. Lin, M. Chen, F.-C. Que, L. Tao, X.-L. Cen, Y.-M. Zhou, W.-H. Chen, Inorg. Chim. Acta 2014, 409, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCjsL3K&md5=5ac1d6e8b0193e555cd01576fbd86f61CAS |
[38] G. K. Schroeder, C. Lad, P. Wyman, N. H. Williams, R. Wolfenden, Proc. Natl. Acad. Sci. USA 2006, 103, 4052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFWitb4%3D&md5=217a26aff4695b1fc4f936c43a0189cfCAS | 16537483PubMed |
[39] W. Xu, J. A. Craft, P. R. Fontenot, M. Barens, K. D. Knierima, J. H. Albering, F. A. Mautner, S. S. Massoud, Inorg. Chim. Acta 2011, 373, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslaks7g%3D&md5=14a1da8c7a8620e4f5cd05133507c5a1CAS |
[40] M. Roy, R. Santhanagopal, A. R. Chakravaty, J. Chem. Soc., Dalton Trans. 2009, 1024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOlsbY%3D&md5=aa492da6dcd251bf0171c69c689f2053CAS |
[41] L. J. K. Boerner, J. M. Zaleski, Curr. Opin. Chem. Biol. 2005, 9, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFSmu7k%3D&md5=f009bc6ee7ada0ca95f16ef8d84b7e79CAS |
[42] D. S. Sigman, A. Mazumder, D. M. Perrin, Chem. Rev. 1993, 93, 2295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFyisrc%3D&md5=dfe3ee22b62d6a2212234509a350844bCAS |
[43] J. Stubbe, J. W. Kozarich, Chem. Rev. 1987, 87, 1107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsVKlsr0%3D&md5=53fb12834b3c97b0539643ac61cb4c85CAS |
[44] M. S. Deshpande, A. A. Kumbhar, A. S. Kumbhar, Inorg. Chem. 2007, 46, 5450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1arsb4%3D&md5=1966ee658d152a42cae9e126ac70d3ceCAS | 17555312PubMed |
[45] G. J. Chen, Z. G. Wang, X. Qiao, J. Y. Xu, J. L. Tian, S. P. Yan, J. Inorg. Biochem. 2013, 127, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVahsLfE&md5=4b40691515ecd5d196bbcda8e57fd0ccCAS | 23850667PubMed |
[46] G. J. Chen, X. Qiao, C. Y. Gao, G. J. Xu, Z. L. Wang, J. L. Tian, J. Y. Xu, W. Gu, X. Liu, S. P. Yan, J. Inorg. Biochem. 2012, 109, 90.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1yitbs%3D&md5=756c8b9b37dbe85b131baa7211d2a99aCAS | 22440521PubMed |
[47] M. E. Reichmann, S. A. Rice, C. A. Thomas, P. J. Doty, J. Am. Chem. Soc. 1954, 76, 3047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXmtVKmsg%3D%3D&md5=2cefd92640dcd80bface3b22d79bc328CAS |
[48] J.-Y. Pang, Y. Qin, W.-H. Chen, G.-A. Luo, Z.-H. Jiang, Bioorg. Med. Chem. 2005, 13, 5835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFensLg%3D&md5=c7bd842ef9331ec25b45242d818c4c70CAS | 15993616PubMed |