Investigation of the Photodegradation of Reactive Blue 19 on P-25 Titanium Dioxide: Effect of Experimental Parameters
Faridah Abu Bakar A B , Jan-Yves Ruzicka A , Ida Nuramdhani C , Bryce E. Williamson A , Meike Holzenkaempfer A and Vladimir B. Golovko A D EA Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
B Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
C Sekolah Tinggi Teknologi Tekstil, Bandung, Indonesia.
D The MacDiarmid Institute for Advanced Materials and Nanotechnology, Laby 410, Gate 6, Kelburn Parade, Kelburn, Wellington, New Zealand.
E Corresponding author. Email: vladimir.golovko@canterbury.ac.nz
Australian Journal of Chemistry 68(3) 471-480 https://doi.org/10.1071/CH14024
Submitted: 17 January 2014 Accepted: 21 June 2014 Published: 27 August 2014
Abstract
The photocatalytic decolorization and degradation of an anthraquinone-based reactive dye, C.I. Reactive Blue 19, was carried out in laboratory-scale experiments with the systematic variation of several operational parameters, including electron acceptor (hydrogen peroxide) concentration, initial pH, use of buffer solution, aeration, and the specific chemical nature of the buffer solution. Photodegradation was performed under simulated natural light, and conditions were chosen to mimic those found in industry. Mineralization and decolorization were monitored by UV-vis spectroscopy and total organic carbon analysis, and kinetics were modelled using an in-series first-order combination mechanism. Reaction products were examined and monitored by high-resolution mass spectrometry. Under the conditions explored, the reaction rate was found to depend not only on pH and electron acceptor concentration, but also on the specific chemical nature of the buffer used.
References
[1] A. B. dos Santos, F. J. Cervantes, J. B. van Lier, Bioresour. Technol. 2007, 98, 2369.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVaiu78%3D&md5=7b02bc144bc6fe126bee6d4954c44c7aCAS | 17204423PubMed |
[2] Č. Novotný, N. Dias, A. Kapanen, K. Malachová, M. Vándrovcová, M. Itävaara, N. Lima, Chemosphere 2006, 63, 1436.
| Crossref | GoogleScholarGoogle Scholar | 16297428PubMed |
[3] J. H. Weisburger, Mutat. Res. 2002, 506-507, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1Gitro%3D&md5=26e11174926ea19b495c4d184ec513b8CAS | 12351140PubMed |
[4] P. P. Champagne, M. E. Nesheim, J. A. Ramsay, Enzyme Microb. Technol. 2010, 46, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGgs73I&md5=f6a4c5ac441b0f354248b96f9d7e06dfCAS | 21892235PubMed |
[5] A. Özcan, Ç. Ömeroglu, Y. Erdogan, A. S. Ozcan, J. Hazard. Mater. 2007, 140, 173.
| Crossref | GoogleScholarGoogle Scholar | 16920256PubMed |
[6] Y. He, G. Li, Z. Jiang, H. Wang, J. Zhao, H. Su, Desalination 2011, 279, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWksL7O&md5=fc55e0c7031adf58d1b30c055ab1bb86CAS |
[7] E. K. Dafnopatidou, G. P. Gallios, Ind. Eng. Chem. Res. 2007, 46, 2125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVCntb4%3D&md5=88d767903fef787601bff8f1fcbb1db4CAS |
[8] J. E. B. McCallum, A. Stephen, S. Alkan, R. L. Depinto, R. U. R. Wahl, Environ. Sci. Technol. 2000, 34, 5157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVyhs78%3D&md5=da9b4389cc635edb3960c92728dccdadCAS |
[9] W. J. Epolito, Y. H. Lee, L. A. Bottomley, Dyes Pigm. 2005, 67, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlOgsrc%3D&md5=fe2fc59fd38ab25bca3e2e502dbd6556CAS |
[10] M. Constapel, M. Schellenträger, J. M. Marzinkowski, Water Res. 2009, 43, 733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFelsb0%3D&md5=e03614444f2216a67d1b31b6c0c83373CAS | 19110293PubMed |
[11] O. J. Hao, H. Kim, P.-C. Chiang, Crit. Rev. Environ. Sci. Technol. 2000, 30, 449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFSnurc%3D&md5=51d376350757ae3bdb6ebe0bebdd9bdfCAS |
[12] A. Fujishima, K. Honda, Nature 1972, 238, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVykurw%3D&md5=f05586fdcc8bf93d4a7cf65532f9cdb6CAS | 12635268PubMed |
[13] V. K. Gupta, R. Jain, A. Mittal, T. A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Mater. Sci. Eng. C 2012, 32, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWjtbjO&md5=702ee9948778476106afd8442956637fCAS |
[14] S. Rehman, R. Ullah, A. M. Butt, J. Hazard. Mater. 2009, 170, 560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGqur3K&md5=c56574f2be91bcfa42f8cbcc2aa67167CAS | 19540666PubMed |
[15] V. K. Gupta, R. Jain, S. Agarwal, M. Shrivastava, Colloids Surf., A 2011, 378, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFartr4%3D&md5=fb282991260a1bff859d45ba6ff59c01CAS |
[16] H. R. Jafry, M. V. Liga, Q. Li, A. R. Barron, Environ. Sci. Technol. 2011, 45, 1563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslek&md5=a3991efc9bda84820bd4c7c2da885ef2CAS | 21194213PubMed |
[17] B. Thinnes, New nanoscale reference material to be known as P25, Hydrocarbon Processing [Online] 2012. Available at http://www.hydrocarbonprocessing.com/Article/3096210/New-nanoscale-reference-material-to-be-known-as-P25.html?ArticleId=3096210
[18] A. Mills, C. Hill, P. Robertson, J. Photochem. Photobiol., A 2012, 237, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVSksLo%3D&md5=9719cd6537aa5bd8433d2f483e0bff4cCAS |
[19] K. B. Jaimy, K. V. Baiju, S. Ghosh, K. Warrier, J. Solid State Chem. 2012, 186, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2nt7g%3D&md5=8080fcae5b17a8a7e1e3ec6ffa19477eCAS |
[20] Y. C. Hsu, H. C. Lin, C. W. Lue, Y. T. Liao, C. M. Yang, Appl. Catal. B 2009, 89, 309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtleqs7o%3D&md5=994097966e839bfc0e24f703eda5ac30CAS |
[21] D. Dai, W. Liu, Y. Yu, H. Gao, G. Liu, in 2011 International Conference on Materials for Renewable Energy & Environment (ICMREE) 2011, Vol. 2, pp. 1408–1412 (Institute of Electrical and Electronics Engineers: New York, NY).
[22] Y. J. Liu, M. Aizawa, Z. M. Wang, H. Hatori, N. Uekawa, H. Kanoh, J. Colloid Interface Sci. 2008, 322, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrsLg%3D&md5=0a36129b83ab01458b41462643828c54CAS | 18406418PubMed |
[23] J. Yao, C. Wang, Int. J. Photoenergy 2010, 2010, 1.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. V. Dozzi, L. Prati, P. Canton, E. Selli, Phys. Chem. Chem. Phys. 2009, 11, 7171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsleltr8%3D&md5=c21e1211c6d781ba29451488d37e0e25CAS | 19672526PubMed |
[25] N. M. Mahmoodi, M. Arami, J. Photochem. Photobiol. B 2009, 94, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmu7rF&md5=4cd584155ef8408cbfbfe62db3a4c810CAS | 18948013PubMed |
[26] D. Chen, M. Sivakumar, A. K. Ray, Dev. Chem. Eng. Miner. Process. 2008, 8, 505.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. M. Burkinshaw, M. Mignanelli, P. E. Froehling, M. J. Bide, Dyes Pigm. 2000, 47, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslyhurw%3D&md5=5ffd7d02a98c4715a6691cdcd69c88fcCAS |
[28] V. M. Correia, T. Stephenson, S. J. Judd, Environ. Technol. 1994, 15, 917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvFCrt7g%3D&md5=3dabffa2d148df54299502118f61728aCAS |
[29] C. Lizama, J. Freer, J. Baeza, H. D. Mansilla, Catal. Today 2002, 76, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslyqtLc%3D&md5=04ec4a22c9531fc312454dcd70952cfbCAS |
[30] C. Lizama, M. C. Yeber, J. Freer, J. Baeza, H. D. Mansilla, Water Sci. Technol. 2001, 44, 197.
| 1:CAS:528:DC%2BD3MXosFemt7g%3D&md5=384968707f0a7d0e2dc131c06addfad4CAS | 11695459PubMed |
[31] P. Peralta-Zamora, A. Kunz, S. G. de Moraes, R. Pelegrini, P. de Campos Moleiro, J. Reyes, N. Duran, Chemosphere 1999, 38, 835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislaqsw%3D%3D&md5=5584ff9d44fa4021f9adebc309538f77CAS | 10903115PubMed |
[32] M. Saquib, M. Abu Tariq, M. M. Haque, M. Muneer, J. Environ. Manage. 2008, 88, 300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotV2iu7k%3D&md5=4fe599e564c30369d7d108e1f963af75CAS | 17490807PubMed |
[33] R. B. M. Bergamini, E. B. Azevedo, L. R. R. d. Araújo, Chem. Eng. J. 2009, 149, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslyqu7s%3D&md5=2c588507094dc9e8f00edbc64accd3c0CAS |
[34] C. O’Neill, F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pinheiro, W. Delee, J. Chem. Technol. Biotechnol. 1999, 74, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslyrsrw%3D&md5=1639be10ebe06003f122545145204b07CAS |
[35] J. M. Herrmann, Appl. Catal. B 2010, 99, 461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOntL7I&md5=70af70703e60c3a11f728e545a1f3ae5CAS |
[36] M. Y. Ghaly, T. S. Jamil, I. E. El-Seesy, E. R. Souaya, R. A. Nasr, Chem. Eng. J. 2011, 168, 446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGhsrc%3D&md5=2e4df6ae7f31e0ad2cf0d28ae7b0d2b2CAS |
[37] N. T. Nolan, D. W. Synnott, M. K. Seery, S. J. Hinder, A. Van Wassenhoven, S. C. Pillai, J. Hazard. Mater. 2012, 211-212, 88.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktValtbg%3D&md5=043b6636096ff382d8604d3ca34f35ffCAS | 21963170PubMed |
[38] S. Ahmed, M. G. Rasul, R. Brown, M. A. Hashib, J. Environ. Manage. 2011, 92, 311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WktLfJ&md5=d944c9585e8102e4a056ac636002d7cdCAS | 20950926PubMed |
[39] F. Herrera, A. Lopez, G. Mascolo, P. Albers, J. Kiwi, Water Res. 2001, 35, 750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslSlt70%3D&md5=0713c3012260ea18253241a8e2d6a67dCAS | 11228974PubMed |
[40] C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Dyes Pigm. 2001, 49, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVWqu7s%3D&md5=e1135edcbc6c2ffa6bed5b5d2137e40aCAS |
[41] D. B. Vonˇcina, A. Majcen-Le-Marechal, Dyes Pigm. 2003, 59, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVKltLY%3D&md5=e4e800bdb748aad54c3ad576f7ff37a6CAS |
[42] M. Qamar, M. Saquib, M. Muneer, Dyes Pigm. 2005, 65, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFOhtLY%3D&md5=e2d56726e94c722d8599ba0c456fa0a9CAS |
[43] M. M. Haque, M. Muneer, Dyes Pigm. 2007, 75, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Kiu7g%3D&md5=65b28fb0b536544ce838707d30943b1eCAS |
[44] A. P. Toor, A. Verma, C. K. Jotshi, P. K. Bajpai, V. Singh, Dyes Pigm. 2006, 68, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlKgt7w%3D&md5=953f3b0eebbc6e3e9821ed2e85e51881CAS |
[45] M. Abu Tariq, M. Faisal, M. Saquib, M. Muneer, Dyes Pigm. 2008, 76, 358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGjtLbJ&md5=6aaf7922a0fc69bb7dc7d499a6420336CAS |
[46] V. K. Gupta, J. Environ. Manage. 2009, 90, 2313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1ekt7c%3D&md5=cf2db2fe639077a6ff1baa9c686fb4edCAS | 19264388PubMed |
[47] D. E. Kritikos, N. P. Xekoukoulotakis, E. Psillakis, D. Mantzavinos, Water Res. 2007, 41, 2236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVensLg%3D&md5=4690edf6e65729bf9d3fd67d1980e105CAS | 17353027PubMed |
[48] J. Gunlazuardi, W. A. Lindu, J. Photochem. Photobiol. Chem. 2005, 173, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWnu70%3D&md5=2c17c1151227bd76b9763574b9bb2765CAS |
[49] V. K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Mater. Sci. Eng. C 2011, 31, 1062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFajtL8%3D&md5=95d028aac04365a8f9a54e9d0d588989CAS |
[50] P. A. Pekakis, N. P. Xekoukoulotakis, D. Mantzavinos, Water Res. 2006, 40, 1276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1WrurY%3D&md5=0dd6b73900085cca08beba54ad57d42bCAS | 16510167PubMed |
[51] S. M. Gupta, M. Tripathi, Chin. Sci. Bull. 2011, 56, 1639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyhurs%3D&md5=eb6ec3f8669c46d36ae3ba5fb011174cCAS |
[52] M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Water Res. 2010, 44, 2997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVKhur4%3D&md5=ca4191a8f27cfd95b393d9fff5d5c9e4CAS | 20378145PubMed |
[53] V. G. Gandhi, M. K. Mishra, P. A. Joshi, J. Ind. Eng. Chem. 2012, 18, 1902.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWiurfM&md5=19a89d97f13e0eec8af24c3f1097b9aaCAS |
[54] Ullmann’s Encyclopedia of Industrial Chemistry (Ed. F. Ullmann) 2006 [Online]. Available at http://onlinelibrary.wiley.com/book/10.1002/14356007
[55] M. Mukhopadhyay, D. P. Daswat, Water Sci. Technol. 2012, 67, 440.
| Crossref | GoogleScholarGoogle Scholar |
[56] U. Diebold, Surf. Sci. Rep. 2003, 48, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVWqtQ%3D%3D&md5=86863f271bfd857f9f2587f018cc51d1CAS |
[57] A. G. Thomas, K. L. Syres, Chem. Soc. Rev. 2012, 41, 4207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVyku7o%3D&md5=54ade1300c6d5d9f06ae469beef8615fCAS | 22517475PubMed |
[58] J. Moser, S. Punchihewa, P. P. Infelta, M. Grätzel, Langmuir 1991, 7, 3012.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXms1Kmsrg%3D&md5=dc1af5e5cc7e678060f73f2668c94214CAS |
[59] A. G. Rincon, C. Pulgarin, Appl. Catal. B 2004, 51, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Kis70%3D&md5=f6ed6d0c47c8e8bfa05689fbc4c66f59CAS |
[60] M. Abdullah, G. K. Low, R. W. Matthews, J. Phys. Chem. 1990, 94, 6820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltVKisbY%3D&md5=a8fcc4373e2fb84b516f4fb5f08a8da0CAS |
[61] B. J. Brotherton, in Encyclopedia of Inorganic Chemistry (Ed. R. B. King) 1994, p. 368 (John Wiley and Sons Ltd.: Chichester).
[62] C. Karunakaran, R. Kamalam, Synth. React. Inorg. Met.-Org. Chem. 1999, 29, 1463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVGrsrY%3D&md5=493624edb1b13976cc10ebee15a17ee2CAS |
[63] C. M. Ling, A. R. Mohamed, S. Bhatia, Chemosphere 2004, 57, 547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1ylu7Y%3D&md5=a1dbaebe2e48a20a0f93cc9423adaca2CAS | 15488916PubMed |
[64] U. G. Akpan, B. H. Hameed, J. Hazard. Mater. 2009, 170, 520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGqur3P&md5=28637f543580049150b982202f23cbb1CAS | 19505759PubMed |
[65] R. Villacres, S. Ikeda, T. Torimoto, B. Ohtani, J. Photochem. Photobiol. Chem. 2003, 160, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Sqsr0%3D&md5=0e6178927876cff6a580412a4a4d44aeCAS |
[66] M. Salaices, B. Serrano, H. I. de Lasa, Chem. Eng. Sci. 2004, 59, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslOnsbs%3D&md5=f469a0730d4b61309c13d2aef21c6a71CAS |