Novel and Simple Synthesis of Brominated 1,10-Phenanthrolines
Drahomír Výprachtický A B , Dana Kaňková A , Veronika Pokorná A , Ivan Kmínek A , Vagif Dzhabarov A and Věra Cimrová A BA Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
B Corresponding authors. Email: vyprachticky@imc.cas.cz; cimrova@imc.cas.cz
Australian Journal of Chemistry 67(6) 915-921 https://doi.org/10.1071/CH13711
Submitted: 3 January 2014 Accepted: 9 February 2014 Published: 27 March 2014
Abstract
A novel, simple, and reasonably efficient synthesis of 3,8-dibromo-1,10-phenanthroline, 3,6-dibromo-1,10-phenanthroline, 3,5,8-tribromo-1,10-phenanthroline, and 3,5,6,8-tetrabromo-1,10-phenanthroline is presented herein. The crucial role of a new catalyst (sulfur dichloride – SCl2) for the bromination of 1,10-phenanthroline is reported. The bromination of 1,10-phenanthroline monohydrate in the presence of SCl2 and pyridine yielded the brominated compounds, previously only possible through the complicated multi-step and tedious Skraup synthesis method. The application of the bromination catalyst SCl2 as a medium-strength Lewis acid is demonstrated for the first time, and the results are compared with the behaviours of known weak (sulfur chloride – S2Cl2) and strong (thionyl chloride – SOCl2) bromination catalysts. A reaction mechanism was proposed.
References
[1] M. Pandrala, F. Li, L. Wallace, P. J. Steel, B. Moore, J. Autschbach, J. G. Collins, F. R. Keene, Aust. J. Chem. 2013, 66, 1065.| Crossref | GoogleScholarGoogle Scholar |
[2] X. He, G. Yang, X. Sun, L. Xie, L. Tan, Aust. J. Chem. 2013, 66, 1406.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. Tzalis, Y. Tor, Tetrahedron Lett. 1995, 36, 6017.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Karnahl, S. Krieck, H. Gorls, S. Tschierlei, M. Schmitt, J. Popp, D. Chartrand, G. S. Hanan, R. Goarke, J. G. Vos, S. Rau, Eur. J. Inorg. Chem. 2009, 4962.
| Crossref | GoogleScholarGoogle Scholar |
[5] V. Dénes, R. Chira, J. Prakt. Chemie 1978, 320, 172.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. R. Katritzki, R. Taylor, in Advances in Heterocyclic Chemistry (Eds A. R. Katritzki, R. Taylor) 1990, Vol. 47, Ch. 11, pp. 382–387 (Academic Press, Inc.: San Diego, California 92201).
[7] F. H. Case, J. Org. Chem. 1951, 16, 941.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. R. Snyder, H. E. Freier, J. Am. Chem. Soc. 1946, 68, 1320.
| Crossref | GoogleScholarGoogle Scholar | 20990996PubMed |
[9] T. Yamamoto, Y. Saitoh, K. Anzai, H. Fukumoto, T. Tasuda, Y. Fujiwara, B.-K. Choi, K. Kubota, T. Miyamae, Macromolecules 2003, 36, 6722.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. Tzalis, Y. Tor, S. Failla, J. S. Siegel, Tetrahedron Lett. 1995, 36, 3489.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Saitoh, T. Koizumi, K. Osakada, T. Yamamoto, Can. J. Chem. 1997, 75, 1336.
| Crossref | GoogleScholarGoogle Scholar |
[12] C. Dietrich-Buchecker, M. C. Jimenéz, J.-P. Sauvage, Tetrahedron Lett. 1999, 40, 3395.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. J. P. Bousquet, D. W. Bruce, J. Mater. Chem. 2001, 11, 1769.
| Crossref | GoogleScholarGoogle Scholar |
[14] N. S. Baek, H. K. Kim, Y. Lee, J. Kang, T. J. Kim, G. T. Hwang, B. H. Kim, Thin Solid Films 2002, 417, 111.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. W. Ciszek, J. M. Tour, Tetrahedron Lett. 2004, 45, 2801.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. W. Thomas, Ruthenium–DNA Hybrid Materials for Supramolecular Synthesis and Investigations into Osmotic Effects in Ionomeric Polymer–Metal Composites, UMI 3021196 2001, Ph.D. Thesis, University of California, San Diego.
[17] E. E. Garcia, C. V. Gresco, I. M. Hunsberger, J. Am. Chem. Soc. 1960, 82, 4430.
| Crossref | GoogleScholarGoogle Scholar |
[18] G. Manolikakes, A. Gavryushin, P. Knochel, J. Org. Chem. 2008, 73, 1429.
| Crossref | GoogleScholarGoogle Scholar | 18211086PubMed |
[19] K. Madeja, J. Prakt. Chemie 1962, 17, 97.
| Crossref | GoogleScholarGoogle Scholar |