Role of Anion–π Interactions in the Supramolecular Assembly of Salts Containing Asymmetrical Bis(pyridyl) Cations
Zhu-Yan Zhang A B , Zhao-Peng Deng A , Li-Hua Huo A C , Shu-E Zhang B , Hui Zhao A and Shan Gao A CA Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
B Laboratory Centre of Pharmacy, College of Pharmacy Harbin Medical University, Harbin 150081, People’s Republic of China.
C Corresponding authors. Email: lhhuo68@yahoo.com; shangao67@yahoo.com
Australian Journal of Chemistry 67(10) 1504-1515 https://doi.org/10.1071/CH13673
Submitted: 5 December 2013 Accepted: 23 February 2014 Published: 10 April 2014
Abstract
Self-assembly of three flexible bis(pyridyl) molecules with different inorganic acids (HPF6, HClO4, and HNO3) leads to the formation of eight salts, which exhibit diverse architectures involving hydrogen bonding and anion–π interactions. The three types of inorganic anions in these salts formed anion–π interactions with HM+ and H2M2+ except for 2, in which the six F atoms were involved in hydrogen bonds. Anion–π interactions produced diverse motifs of one (anion)-to-one (cation) in 1, 3, 4, and 6, two (anion)-to-one (cation) in 5 and 7, and (4,4) layer in 8. Hydrogen bonds resulted in interesting supramolecular architectures, such as right- and left-handed helical chains in 3, 2-fold interpenetrating networks in 5, and 3-fold interpenetrating networks in 8. Structural analyses indicated that the conformations of the three flexible asymmetrical bis(pyridyl) molecules and the non-covalent bonding interactions, such as hydrogen bonds and anion···π interactions, play crucial roles in the final architectures of these salts. Thermogravimetric analyses indicated that the thermal stability of the eight salts decreased in the order of perchlorates, hexafluorophosphates, and nitrates. The emission intensity of the perchlorates is much stronger than that of the hexafluorophosphates, nitrates, and their corresponding organic molecules in the solid state at room temperature.
References
[1] (a) R. Parthasarathi, V. Subramanian, N. Sathyamurthy, J. Phys. Chem. A 2006, 110, 3349.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Cju7Y%3D&md5=4d3c2dd1dc29528ce77a425f21073ecdCAS | 16526611PubMed |
(b) G. A. Jeffrey, An Introduction to Hydrogen Bonding 1997 (Oxford University Press: Oxford).
[2] (a) C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKmtb0%3D&md5=4e117ef7be9a41c7ae40ad30cca39361CAS |
(b) S. Grimme, J. Antony, T. Schwabe, C. Muck-Lichtenfeld, Org. Biomol. Chem. 2007, 5, 741.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) H. Takahashi, S. Tsuboyama, Y. Umezawa, K. Honda, M. Nishio, Tetrahedron 2000, 56, 6185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVKksrY%3D&md5=e130c389f3231606aeef119315ff3219CAS |
(b) M. Nishio, CrystEngComm 2004, 6, 130.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksV2kurk%3D&md5=37b9d5f13f0fda64eec626a575820088CAS | 11851453PubMed |
(b) H. J. Schneider, Angew. Chem. Int. Ed. 2009, 48, 3924.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) J. Steed, J. L. Atwood, Supramolecular Chemistry 2001 (John Wiley: New York).
(b) Special issue dedicated to Supramolecular Chemistry. Chem. Soc. Rev. 2007, 36, 125.
| Crossref | GoogleScholarGoogle Scholar |
[6] C. Garau, A. Frontera, D. Quiñonero, P. Ballester, A. Costa, P. M. Deyà, in Recent Research Developments in Chemical Physics (Ed S. G. Pandalai) 2004, Vol. 5, pp. 227 (Transworld Research Network: Kerala, India), and references cited therein.
[7] (a) M. Egli, S. Sarkhel, Accounts Chem. Res. 2007, 40, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWjtrfL&md5=da328bf3c8c71df864ecc0d3ac66a542CAS |
(b) P. Gamez, T. J. Mooibroek, S. J. Teat, J. Reedijk, Accounts Chem. Res. 2007, 40, 435.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. L. Schottel, H. T. Chifotides, K. R. Dunbar, Chem. Soc. Rev. 2008, 37, 68.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Robertazzi, F. Krull, E.-W. Knapp, P. Gamez, CrystEngComm 2011, 13, 3293.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Das, S. R. Choudhury, C. Estarellas, B. Dey, A. Frontera, J. Hemming, M. Helliwell, P. Gamez, S. Mukhopadhyay, CrystEngComm 2011, 13, 4519.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) C. J. Burchell, C. Glidewell, A. J. Lough, G. Ferguson, Acta Crystallogr. B 2001, 57, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3ntVaksQ%3D%3D&md5=ac17cc5444d4e5cce8add91e51cc7070CAS | 11262435PubMed |
(b) K. K. Arora, V. R. Pedireddi, J. Org. Chem. 2003, 68, 9177.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Cowan, J. A. K. Howard, G. J. Mclntyre, S. M.-F. Lo, I. D. Williams, Acta Crystallogr. B 2003, 59, 794.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y.-B. Wang, W.-J. Zhuang, L.-P. Jin, S.-Z. Lu, J. Mol. Struct. 2005, 737, 165.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. Shan, W. Jones, Tetrahedron Lett. 2003, 44, 3687.
| Crossref | GoogleScholarGoogle Scholar |
(f) O. Fabelo, L. Canadillas-Delgado, F. S. Delgado, P. Lorenzo-Luis, M. M. Laz, M. Julve, C. Ruiz-Perez, Cryst. Growth Des. 2005, 5, 1163.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Du, Z.-H. Zhang, X.-J. Zhao, Cryst. Growth Des. 2005, 5, 1247.
| Crossref | GoogleScholarGoogle Scholar |
(h) A. Jayaraman, V. Balasubramaniam, S. Valiyaveettil, Cryst. Growth Des. 2005, 5, 1575.
| Crossref | GoogleScholarGoogle Scholar |
(i) S. Varughese, V. R. Pedireddi, Chem. –Eur. J. 2006, 12, 1597.
| Crossref | GoogleScholarGoogle Scholar |
(j) G. A. Broker, E. R. T. Tiekink, CrystEngComm 2007, 9, 1096.
| Crossref | GoogleScholarGoogle Scholar |
(k) N. Barooah, W. M. Singh, J. B. Baruah, J. Mol. Struct. 2008, 875, 329.
| Crossref | GoogleScholarGoogle Scholar |
(l) M.-Y. He, Z.-H. Zhang, L.-D. Lu, X.-J. Yang, X. Wang, Acta Crystallogr. 2009, C65, o525.
(m) M. Du, X.-J. Jiang, X. Tan, Z.-H. Zhang, H. Cai, CrystEngComm 2009, 11, 454.
| Crossref | GoogleScholarGoogle Scholar |
(n) S. Roy, G. Mahata, K. Biradha, Cryst. Growth Des. 2009, 9, 5006.
| Crossref | GoogleScholarGoogle Scholar |
(o) M. Linares, A. Briceno, New J. Chem. 2010, 34, 587.
| Crossref | GoogleScholarGoogle Scholar |
(p) B. K. Saha, S. Bhattacharya, CrystEngComm 2010, 12, 2369.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) F. A. Almeida Paz, A. D. Bond, Y. Z. Khimyak, J. Klinowski, New J. Chem. 2002, 26, 381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVGgurg%3D&md5=6484df946e16bfc85f8c1e1bed7adae3CAS |
(b) F. A. Almeida Paz, J. Klinowski, CrystEngComm 2003, 5, 238.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. B. Aakeröy, J. Desper, J. F. Urbina, CrystEngComm 2005, 7, 193.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Du, Z.-H. Zhang, X.-G. Wang, H.-F. Wu, Q. Wang, Cryst. Growth Des. 2006, 6, 1867.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Rajput, R. Santra, K. Biradha, Aust. J. Chem. 2010, 63, 578.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) R. Prins, P. J. M. W. L. Birker, G. C. Verschoor, Acta Crystallogr. B 1982, 38, 2934.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Maresca, G. Natile, F. P. Fanizzi, J. Am. Chem. Soc. 1989, 111, 1492.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. R. Batten, J. C. Jeffery, M. D. Ward, Inorg. Chim. Acta 1999, 292, 231.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. W. Ng, Acta Crystallogr. 1999, C55, 2105.
(e) H. Liu, M. Du, X. H. Bu, Acta Crystallogr. 2001, E57, o127.
(f) M. Felloni, A. J. Blake, P. Hubberstey, C. Wilson, M. Schröder, CrystEngComm 2002, 4, 483.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. A. Iyere, W. Y. Boadi, D. Atwood, S. Parkin, Acta Crystallogr. B 2003, 59, 664.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. Y. Cheng, Y. B. Dong, J. P. Ma, R. Q. Huang, M. D. Smith, Inorg. Chem. Commun. 2005, 8, 6.
| Crossref | GoogleScholarGoogle Scholar |
(i) P. C. Junk, C. J. Kepert, L. I. Semenova, B. W. Skelton, A. H. White, Z. Anorg. Allg. Chem. 2006, 632, 1293.
| Crossref | GoogleScholarGoogle Scholar |
(j) S. J. Kavitha, K. Panchanatheswaran, J. N. Low, G. Ferguson, C. Glidewell, Acta Crystallogr. 2006, C62, o165.
(k) Y. Z. Jiang, L. Q. Zhang, J. M. Zhao, M. Y. Qin, Chin. J. Struct. Chem. 2007, 26, 737.
(l) D. P. Rillema, R. Kirgan, C. Moore, Acta Crystallogr. 2007, E63, o3740.
[11] (a) B. Milani, A. Anzilutti, L. Vicentini, A. Sessanta o Santi, E. Zangrando, S. Geremia, G. Mestroni, Organometallics 1997, 16, 5064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsl2qsrc%3D&md5=84b17dabca50cc78124b6fdb1d50a2b0CAS |
(b) W. Chen, C. M. Liu, D. G. Li, X. Z. You, Acta Crystallogr. 1997, C53, 1499.
(c) P. C. Junk, Y. Kim, B. W. Skelton, A. H. White, Z. Anorg. Allg. Chem. 2006, 632, 1340.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Custelcean, D. E. Jiang, B. P. Hay, W. S. Luo, B. H. Gu, Cryst. Growth Des. 2008, 8, 1909.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Radanović, G. Kaluđerović, S. Gómez-Ruiz, D. Sladić, M. Šumar-Ristović, I. Brčesky, K. Anđelković, J. Chem. Crystallogr. 2009, 39, 138.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. J. Mooibroek, C. A. Black, P. Gamez, J. Reedijk, Cryst. Growth Des. 2008, 8, 1082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWksbs%3D&md5=1d6744f38ca9475aeedf65dd5091969dCAS |
[13] (a) Z.-P. Deng, H.-L. Qi, L.-H. Huo, H. Zhao, S. Gao, CrystEngComm 2011, 13, 6632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gurfM&md5=2dd629bb19cac3c939561e050d4c7305CAS |
(b) Z.-Y. Zhang, Z.-P. Deng, L.-H. Huo, H. Zhao, S. Gao, CrystEngComm 2013, 15, 5261.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. P. Foxon, O. Walter, S. Schindler, Eur. J. Inorg. Chem. 2002, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Kquw%3D%3D&md5=ab4bde2218e29ef15f7b6f217c829faaCAS |
[15] G. M. Sheldrick, SHELXTL-97, Program for Crystal Structure Solution and Refinement 1997 (University of Gottingen: Germany).
[16] (a) K. Tsutsui, T.-A. Koizumi, K. Tanaka, H. Hayashi, J. Mol. Struct. 2007, 829, 168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsF2ntrw%3D&md5=e268cf36f686f3705d22d2b84622455bCAS |
(b) W. Huang, H. Qian, J. Mol. Struct. 2007, 832, 108.
| Crossref | GoogleScholarGoogle Scholar |
[17] V. A. Blatov, IUCr CompComm Newsl. 2006, 4.
[18] D. Quiñonero, C. Garau, C. Rotger, A. Frontera, P. Ballester, A. Costa, P. M. Deyà, Angew. Chem. Int. Ed. 2002, 41, 3389.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) Z.-P. Deng, Z.-Y. Zhang, L.-H. Huo, S. W. Ng, H. Zhao, S. Gao, CrystEngComm 2012, 14, 6548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGgtbrN&md5=f4e37db6062fce6acb57ee0bcec5a29eCAS |
(b) Z.-Y. Zhang, Z.-P. Deng, L.-H. Huo, H. Zhao, S. Gao, Inorg. Chem. 2013, 52, 5914.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z.-Y. Zhang, Z.-P. Deng, L.-H. Huo, H. Zhao, S. Gao, Polyhedron 2013, 59, 38.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. Rendell, Fluorescence and Phosphorescence 1987 (Wiley: New York).