Hydrothermal Synthesis, Crystal Structures, and Photoluminescent Properties of Metal–Organic Frameworks Derived from 3,5-Bis(benzimidazol-1-yl)pyridine and Dicarboxylic Acids
Jiakun Xu A B E , Xiaochun Sun C , Xingchen Yan B D , Dongmei Zhang B and Mi Sun A EA Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
B Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
C National Oceanographic Centre, Qingdao 266071, China.
D Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
E Corresponding authors. Email: chenfeng858652@163.com; hhsunmi@yeah.net
Australian Journal of Chemistry 67(6) 901-906 https://doi.org/10.1071/CH13633
Submitted: 18 November 2013 Accepted: 29 January 2014 Published: 6 March 2014
Abstract
We successfully synthesized two new metal coordination polymers [Cd3(bdc)3(L)3(H2O)3]n (1) and [Co(tda)(L)]n (2) (H2bdc = 1,2-benzenedicarboxylic acid, H2tda = 2,5-thiophendicarboxylic acid, and L = 3,5-bis(benzimidazol-1-yl)pyridine), which were then characterized by IR, and elemental, X-ray powder diffraction, and X-ray single-crystal diffraction analysis. Complex 1 possesses a uninodal three-connected hcb Shubnikov hexagonal plane net with {63} topology. Complex 2 features a three-connected topological net with {82·10} topology (so-called ‘tongue-and-groove’ structure). A typical T-shaped molecular bilayer motif, which has rarely been reported previously, was successfully constructed by strategically selecting H2tda as the second ligand. In addition, the solid-state photoluminescent spectra of 1 and 2 were measured at room temperature.
References
[1] (a) R. Poloni, B. Smit, J. B. Neaton, J. Am. Chem. Soc. 2012, 134, 6714.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWms78%3D&md5=d0e4860fe8a7d69452a33772e04c2c76CAS | 22463719PubMed |
(b) J. Y. Zou, H. L. Gao, S. Shi, J. Z. Cui, P. Cheng, CrystEngComm 2013, 15, 2682.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. F. Ma, M. L. Han, J. H. Qin, L. Y. Wang, M. Du, Inorg. Chem. 2012, 51, 9431.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. B. Lalonde, O. K. Farha, K. A. Scheidt, J. T. Hupp, ACS Catal. 2012, 2, 1550.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869.
| Crossref | GoogleScholarGoogle Scholar |
(g) G. Lu, J. T. Hupp, J. Am. Chem. Soc. 2010, 132, 7832.
| Crossref | GoogleScholarGoogle Scholar |
(h) F. Guo, F. Wang, H. Yang, X. L. Zhang, J. Zhang, Inorg. Chem. 2012, 51, 9677.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J. K. Xu, X. C. Sun, Y. H. Fan, C. F. Bi, M. Sun, Z. Anorg. Allg. Chem. 2012, 638, 1512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvV2rtLc%3D&md5=adb7ffb803aeb699f8738f129caa42e3CAS |
(b) S. S. Chen, Y. Zhao, J. Fan, T. Okamura, Z. S. Bai, Z. H. Chen, W. Y. Sun, CrystEngComm 2012, 14, 3564.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. K. Xu, X. C. Sun, C. X. Ju, L. R. Yang, C. F. Bi, M. Sun, J. Coord. Chem. 2013, 66, 2693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlGgsLg%3D&md5=a0ad63238b3d183768c2e5578367ecd6CAS |
(b) L. L. Zhai, Y. Zhao, L. Luo, P. Wang, Q. Liu, K. Chen, W. Y. Sun, Microporous Mesoporous Mater. 2014, 187, 86.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Zhao, L. L. Zhai, W. Y. Sun, Chinese J. Inorg. Chem. 2014, 30, 99.
[4] V. A. Blatov, A. P. Shevchenko, V. N. Serezhkin, J. Appl. Cryst. 2000, 33, 1193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsl2itrc%3D&md5=d4e6122e36dad96d9e03b97cdffe7165CAS |
[5] V. A. Blatov, M. O’Keeffe, D. M. Proserpio, CrystEngComm 2010, 12, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ohug%3D%3D&md5=2dac558ce81bc9be6538bfaa7334fcedCAS |
[6] T. G. Mitina, V. A. Blatov, Cryst. Growth Des. 2013, 13, 1655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCgsL8%3D&md5=2454b556b863ac438f767bc02d3add67CAS |
[7] X. L. Sun, Z. J. Wang, S. Q. Zang, W. C. Song, C. X. Du, Cryst. Growth Des. 2012, 12, 4431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVynsLrF&md5=c0c9c3ce984c8ea22e75b7f7595dbfcbCAS |
[8] W. Chen, J. Y. Wang, C. Chen, Q. Yue, H. M. Yuan, J. S. Chen, S. N. Wang, Inorg. Chem. 2003, 42, 944.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFKnuw%3D%3D&md5=2ab08503a88999bb2218ba2c857c5a3dCAS | 12588123PubMed |
[9] (a) L. L. Liu, J. J. Huang, X. L. Wang, G. C. Liu, S. Yang, H. Y. Lin, Inorg. Chim. Acta 2013, 394, 715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1elsrvM&md5=d9748777526694e43cc78e6543161a67CAS |
(b) M. Liu, Z. P. Yang, W. H. Sun, X. P. Li, J. Li, J. S. Ma, G. Q. Yang, Inorg. Chim. Acta 2009, 362, 2884.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Hua, Z. Su, Y. Zhao, T. Okamura, G. C. Xu, W. Y. Sun, N. Ueyama, Inorg. Chim. Acta 2010, 363, 3550.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Feng, L. L. Zhou, L. Y. Wang, J. G. Zhou, Z. Q. Shi, J. J. Shang, Inorg. Chim. Acta 2013, 394, 696.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. J. Cao, Y. Liu, L. Y. G. Li, Inorg. Chim. Acta 2012, 392, 16.
| Crossref | GoogleScholarGoogle Scholar |
(f) T. F. Liu, W. F. Wu, C. Q. Wan, C. H. He, C. H. Jiao, G. H. Cui, J. Coord. Chem. 2011, 64, 975.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. Y. Liu, J. C. Ma, L. P. Zhang, J. F. Ma, J. Coord. Chem. 2008, 61, 3583.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. L. Hu, D. P. Cheng, J. G. Liu, D. J. Xu, J. Coord. Chem. 2001, 53, 7.
| Crossref | GoogleScholarGoogle Scholar |
(i) D. P. Cheng, C. G. Feng, M. L. Hu, Y. Q. Zheng, D. J. Xu, Y. Z. Xu, J. Coord. Chem. 2001, 52, 245.
| Crossref | GoogleScholarGoogle Scholar |
[10] SMART and SAINT, Area Detector Control and Integration Software 1996 (Siemens Analytical X-Ray Systems, Inc.: Madison, WI).
[11] SAINT Software Reference Manual 1998 (Bruker AXS: Madison, WI).
[12] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen, Germany).
[13] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen, Germany,.
[14] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=769cfd323e07ca2653f64f077bf0719bCAS |
[15] K. Brandenburg, Diamond, Version 3.1d 2006 (Crystal Impact GbR: Bonn, Germany).