Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Nano-Silver Enhancement Effect on the Luminescence of a Ligand–Eu3+ Complex via a SiO2 Spacer

Rui Wang A B C , Jianguo Tang A B C D , Na Kong B C , Yao Wang A B C , Jixian Liu A B C and Jingquan Liu B C D
+ Author Affiliations
- Author Affiliations

A Institute of Hybrid Materials, Qingdao University, Qingdao 266071, China.

B Laboratory of New Fiber Materials and Modern Textile - The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China.

C Department of Materials Science and Engineering, College of Chemistry, Chemical and Environmental Engineering, Qingdao University, Qingdao 266071, China.

D Corresponding authors. Email: tang@qdu.edu.cn; jliu@qdu.edu.cn

Australian Journal of Chemistry 67(4) 644-650 https://doi.org/10.1071/CH13593
Submitted: 23 July 2013  Accepted: 26 November 2013   Published: 16 December 2013

Abstract

Luminescent rare earth complex (REC) nanocomposites, Eu(TTA)3Phen attached onto Ag@SiO2 nanoshells, were fabricated by facile wet chemistry and self-assembly techniques. Transmission electron microscopy, and fourier transform infrared and UV–Vis spectroscopy were used to investigate the step-by-step fabrication. The luminescence of REC was significantly enhanced using a silver core (size: 45 nm) surrounded by a 20-nm thick silica shell. Thicker or thinner silica shells afforded tuning of the metal-enhanced luminescence. The thiophene-TTA-containing REC fluorophore was able to etch the silver core, resulting in hollow silica shells, consequently displaying no luminescence enhancing capabilities. The etching efficiency was proportional to the concentration of Eu(TTA)3Phen, and decreased with increasing shell thickness.


References

[1]  A.-C. Faure, C. Hoffmann, R. Bazzi, F. Goubard, E. Pauthe, C. A. Marquette, L. J. Blum, P. Perriat, S. Roux, O. Tillement, ACS Nano 2008, 2, 2273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlemtrjL&md5=0e5fd1592bc2f390650bfd9e1653b516CAS | 19206393PubMed |

[2]  K. Ray, R. Badugu, J. R. Lakowicz, J. Am. Chem. Soc. 2006, 128, 8998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt12msbo%3D&md5=e63075e8f704f58762a31dadaf8f404fCAS | 16834349PubMed |

[3]  K. Aslan, M. J. R. Previte, Y. Zhang, C. D. Geddes, J. Phys. Chem. C 2008, 112, 18368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaktbzN&md5=8f741708335c7dc96d1cb467b6fa2101CAS |

[4]  J. R. Lakowicz, Anal. Biochem. 2005, 337, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKiurc%3D&md5=cd5c596af3785c9ff5c4e97478e438d9CAS | 15691498PubMed |

[5]  K. Aslan, J. R. Lakowicz, C. D. Geddes, J. Phys. Chem. B 2005, 109, 6247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Cmsbg%3D&md5=1112489d878367fa300311acf0cb438fCAS | 16851692PubMed |

[6]  K. Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes, J. Am. Chem. Soc. 2007, 129, 1524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVymsA%3D%3D&md5=8bab7fee2e889718e92307758c268395CAS | 17283994PubMed |

[7]  Q. Darugar, W. Qian, M. A. El-Sayed, M. P. Pileni, J. Phys. Chem. B 2006, 110, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12rtb7N&md5=c6894b7a295d8c61976ccf2f7a034961CAS | 16471512PubMed |

[8]  K. Ray, M. H. Chowdhury, J. R. Lakowicz, Anal. Chem. 2007, 79, 6480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1ensbs%3D&md5=5724802cc7e07f248b306983b569cbdbCAS | 17685553PubMed |

[9]  R. Pribik, K. Aslan, Y. X. Zhang, C. D. Geddes, J. Phys. Chem. C 2008, 112, 17969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ors7vP&md5=8c60fe3dc651e00c57ab81c02422d490CAS |

[10]  F. Tang, F. He, H. Cheng, L. Li, Langmuir 2010, 26, 11774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGgurc%3D&md5=a9935bc3bcbf287313354b906419b4a9CAS | 20545370PubMed |

[11]  L. Guo, A. Guan, X. Lin, C. Zhang, G. Chen, Talanta 2010, 82, 1696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wls7%2FM&md5=42a12efeba1364bef33ffd526155ec3dCAS | 20875565PubMed |

[12]  K. Aslan, J. R. Lakowicz, H. Szmacinski, C. D. Geddes, J. Fluoresc. 2004, 14, 677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlyntrY%3D&md5=65acbf8452d9dc26cd783bd15fd6fe0eCAS |

[13]  M. Lessard-Viger, M. Rioux, L. Rainville, D. Boudreau, Nano Lett. 2009, 9, 3066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Skuro%3D&md5=8dad762f6ced7ee4e6da18778eb01f34CAS | 19603786PubMed |

[14]  D. Cheng, Q.-H. Xu, Chem. Commun. 2007, 248.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. P. Wang, R. F. Wang, J. J. Zhang, C. G. Liu, J. Rare Earth 2003, 21, 153.

[16]  B. Yan, J. Y. You, J. Rare Earth 2002, 20, 408.

[17]  J. Wang, Q. Hao, J. Alloy. Compd. 2009, 482, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Crs70%3D&md5=d03519fd8d41b9eeeda830fae84ec23aCAS |

[18]  Y. H. Li, H. J. Zhang, S. B. Wang, Q. G. Meng, H. R. Li, X. H. Chuai, Thin Solid Films 2001, 385, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVWqtLw%3D&md5=377d9934c973084f564df9683f230092CAS |

[19]  D. Zhao, W. P. Qin, C. F. Wu, J. S. Zhang, G. S. Qin, H. Y. Lin, J. Rare Earth 2004, 22, 49.
         | 1:CAS:528:DC%2BD2cXhvVKgsbY%3D&md5=65fa1fa83a9ba5b1c3ac07c298330f3fCAS |

[20]  J. Wu, M. M. Abu-Omar, S. H. Tolbert, Nano Lett. 2001, 1, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFOis78%3D&md5=22bc49c583aace0867977c58c1cba542CAS |

[21]  F. Liu, G. Aldea, J.-M. Nunzi, J. Lumin. 2010, 130, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSltrvE&md5=7000e4a660587c79c918dbbcb822dfbeCAS |

[22]  R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, V. Levchenko, J. Rare Earth 2009, 27, 544.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes, J. Fluoresc. 2007, 17, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisV2htb8%3D&md5=df3d13f9b0bb839daf49a12b64ad48ddCAS | 17279332PubMed |

[24]  W. R. Yang, D. Jaramillo, J. J. Gooding, D. B. Hibbert, R. Zhang, G. D. Willett, K. J. Fisher, Chem. Commun. 2001, 1982.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ylsL4%3D&md5=85255d5d3dbdd6c7be8b6c2da125699aCAS |

[25]  K. Aslan, Z. Leonenko, J. R. Lakowicz, C. D. Geddes, J. Phys. Chem. B 2005, 109, 3157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFCktA%3D%3D&md5=659a2407f730ec136b2d9716e458bc21CAS | 16851335PubMed |

[26]  F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, G. Stucky, J. Am. Chem. Soc. 2010, 132, 2850.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvF2ksL0%3D&md5=62d21a17fe3d036a1eb5aff1b32a350cCAS | 20158187PubMed |

[27]  D. W. Hahn, T. T. Charalampopoulos, J. Phys. D Appl. Phys. 1993, 26, 1851.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXovFGgsw%3D%3D&md5=9c4f9f264e062be6fb723192b63f18f7CAS |

[28]  C. J. Murphy, N. R. Jana, Adv. Mater. 2002, 14, 80.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlSisQ%3D%3D&md5=f0f772b960b2a5e120a4d6a802870317CAS |

[29]  M. Viger, L. Live, O. Therrien, D. Boudreau, Plasmonics 2008, 3, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvFKhu7o%3D&md5=4551ab934f75029ab019a81b6bc1af5fCAS |

[30]  K. Binnemans, Chem. Rev. 2009, 109, 4283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleltLk%3D&md5=f73a5ac9458415909983968d70561eaaCAS | 19650663PubMed |

[31]  J. Tang, X. Huang, Y. Wang, J. Liu, Opt. Mater. 2007, 29, 1774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVCkur4%3D&md5=398420e2436ea4950274b0e0a36bd6edCAS |

[32]  S. Wu, Y. Sun, X. Wang, W. Wu, X. Tian, Q. Yan, Y. Luo, Q. Zhang, J. Photoch. Photobio. A. 2007, 191, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslyrtbY%3D&md5=954c0cd239b50657e86f0f0307428c0cCAS |

[33]  A. Kudelski, Langmuir 2003, 19, 3805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Sjtr4%3D&md5=65ddc0ad9fdae5f99d399b71c0f6d2e2CAS |

[34]  J. Q. Liu, J. J. Gooding, M. N. Paddon-Row, Chem. Commun. 2005, 631.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, Langmuir 1995, 11, 3712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotlKjsr0%3D&md5=30e010a0787c5a13d869335c271a0181CAS |

[36]  A. F. W. Stöber, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
         | Crossref | GoogleScholarGoogle Scholar |