From ‘Lab & Light on a Chip’ to Parallel Microflow Photochemistry
Michael Oelgemöller A D , Norbert Hoffmann B and Oksana Shvydkiv CA James Cook University, School of Pharmacy and Molecular Sciences, Townsville, Qld 4811, Australia.
B CNRS, Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, UFR Sciences, BP 1039, 51687, Reims, Cedex 02, France.
C European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
D Corresponding author. Email: michael.oelgemoeller@jcu.edu.au
Australian Journal of Chemistry 67(3) 337-342 https://doi.org/10.1071/CH13591
Submitted: 31 October 2013 Accepted: 27 November 2013 Published: 6 January 2014
Abstract
Continuous-flow microreactors offer major advantages for photochemical applications. This mini-review summarizes the technological development of microflow devices in the Applied and Green Photochemistry Group at James Cook University, and its associates, from fixed microchips for microscale synthesis to flexible multicapillary systems for parallel photochemistry. Whereas the enclosed microchip offered high space–time-yields, the open capillary-type reactor showed a greater potential for further modifications. Consequently, a 10-microcapillary reactor was constructed and used successfully for process optimization, reproducibility studies, scale-up, and library synthesis. To demonstrate the superiority of microflow photochemistry over conventional batch processes, the reactors were systematically evaluated using alcohol additions to furanones as model reactions. In all cases, the microreactor systems furnished faster conversions, improved product qualities, and higher yields. UVC-induced [2+2] cycloadditions of furanone with alkenes were exemplarily examined in a capillary reactor, thus proving the broad applicability of this reactor type.
References
[1] L. N. Protasova, M. Bulut, D. Ormerod, A. Buekenhoudt, J. Berton, C. V. Stevens, Org. Process Res. Dev. 2013, 17, 760.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2gs70%3D&md5=05b562d90aeba78fdaf0b0637baf0cc9CAS |
[2] I. R. Baxendale, J. Chem. Technol. Biotechnol. 2013, 88, 519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVems7k%3D&md5=a208f44b5250f08ba872929b06dac101CAS |
[3] D. T. McQuade, P. H. Seeberger, J. Org. Chem. 2013, 78, 6384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFeitro%3D&md5=8d3e63ffc348f1dd4fb55c5f3be92d20CAS | 23750988PubMed |
[4] S. C. Stouten, T. Noël, Q. Wang, V. Hessel, Aust. J. Chem. 2013, 66, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOitr0%3D&md5=6dc551e0528fa3e4cd88415ed2935a36CAS |
[5] M. Oelgemöller, Chem. Eng. Technol. 2012, 35, 1144.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem. 2012, 8, 2025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaqtbrJ&md5=e7b65de127ff5d352b8c50549d15aaf5CAS | 23209538PubMed |
[7] M. Oelgemöller, A. Murata, Med. Chem. News 2012, 4, 30.
[8] M. Oelgemöller, O. Shvydkiv, Molecules 2011, 16, 7522.
| Crossref | GoogleScholarGoogle Scholar | 21894087PubMed |
[9] E. E. Coyle, M. Oelgemöller, Photochem. Photobiol. Sci. 2008, 7, 1313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWjtb7J&md5=b0a23e4e0e04b4ef1fa75886b41e7fb6CAS | 18958317PubMed |
[10] O. Shvydkiv, A. Yavorskyy, S. B. Tan, K. Nolan, N. Hoffmann, A. Youssef, M. Oelgemöller, Photochem. Photobiol. Sci. 2011, 10, 1399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOktLnE&md5=3ac8c907914411cd3da203d005ecdc47CAS | 21336374PubMed |
[11] T. Aillet, K. Loubiere, O. Dechy-Cabaret, L. Prat, Chem. Eng. Process. 2013, 64, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyrtL%2FI&md5=a75e071e3434d9c1eac2d0d65538d40eCAS |
[12] H. Maeda, S. Nashihara, H. Mukae, Y. Yoshimi, K. Mizuno, Res. Chem. Intermed. 2013, 39, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVejsLc%3D&md5=8e97409ac4fc7ebd31a1a7ed91be5378CAS |
[13] S. Fuse, Y. Mifune, N. Tanabe, T. Takahashi, Org. Biomol. Chem. 2012, 10, 5205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWnsbw%3D&md5=06c1dd055f695f13c8e704a3cb04a0bcCAS | 22588675PubMed |
[14] H. Lu, M. A. Schmidt, K. F. Jensen, Lab Chip 2001, 1, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ynu70%3D&md5=d828c9368b41b88c61f19c186143113eCAS | 15100885PubMed |
[15] H. Mukae, H. Maeda, S. Nashihara, K. Mizuno, Bull. Chem. Soc. Jpn. 2007, 80, 1157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Cqsbw%3D&md5=68386a3cee24e0fe7d55d64fcbddc79fCAS |
[16] O. Shvydkiv, S. Gallagher, K. Nolan, M. Oelgemöller, Org. Lett. 2010, 12, 5170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yktL%2FI&md5=7f6ecbecbc5a9cc91c9f6538214ae5a2CAS | 20945889PubMed |
[17] K. Tsutsumi, K. Terao, H. Yamaguchi, S. Yoshimura, T. Morimoto, K. Kakiuchi, T. Fukuyama, I. Ryu, Chem. Lett. 2010, 39, 828.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOltr3E&md5=a18983c6524843f8c358d2af6a268418CAS |
[18] A. Sugimoto, T. Fukuyama, Y. Sumino, M. Takagi, I. Ryu, Tetrahedron 2009, 65, 1593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2msLg%3D&md5=05f3c6128fa2a07a8deaa6fb75e6ee04CAS |
[19] A. Vasudevan, C. Villamil, J. Trumbull, J. Olson, D. Sutherland, J. Pan, S. Djuric, Tetrahedron Lett. 2010, 51, 4007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGks74%3D&md5=c9b61adc7082efad91e4e2633e8aa896CAS |
[20] K. Terao, Y. Nishiyama, S. Aida, H. Tanimoto, T. Morimoto, K. Kakiuchi, J. Photochem. Photobiol. Chem. 2012, 242, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVSltL0%3D&md5=9f7a9e6f9f6a62a64663d61015339c90CAS |
[21] A. Yavorskyy, O. Shvydkiv, K. Nolan, N. Hoffmann, M. Oelgemöller, Tetrahedron Lett. 2011, 52, 278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCqtbzF&md5=fa0a66da838afe726468b82a85731a7eCAS |
[22] D. A. Hook, W. Dohle, P. R. Hirst, M. Pickworth, M. B. Berry, K. Booker-Milburn, J. Org. Chem. 2005, 70, 7558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnslOrt78%3D&md5=8df08529fe7d17085c14b414d6b398bdCAS |
[23] Q. Lefebvre, M. Jentsch, M. Rueping, Beilstein J. Org. Chem. 2013, 9, 1883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKis77I&md5=e07589667ea2aba34b43a97939708f39CAS | 24062857PubMed |
[24] D. T. McQuade, A. G. O’Brien, M. Dörr, R. Rajaratnam, U. Eisold, B. Monnanda, T. Nobuta, H.-G. Löhmannsröben, E. Meggers, P. H. Seeberger, Chem. Sci. 2013, 4, 4067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlentrbO&md5=3b4afcad6e5765eae90f1ee13e3661dfCAS |
[25] X. Wang, G. D. Cuny, T. Noël, Angew. Chem. Int. Ed. 2013, 52, 7860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVeks7Y%3D&md5=b27618e57a20a2054045f25b8b32a033CAS |
[26] D. T. McQuade, A. G. O’Brien, M. Dörr, R. Rajaratnam, U. Eisold, B. Monnanda, T. Nobuta, H.-G. Löhmannsröben, E. Meggers, P. H. Seeberger, Chem. Sci. 2013, 4, 4067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlentrbO&md5=3b4afcad6e5765eae90f1ee13e3661dfCAS |
[27] J.-i. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun. 2013, 9896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOisbjE&md5=38fb1ad07adeec75fc61b7c43ab1f4bbCAS |
[28] Y. Matsushita, N. Ohba, S. Kumada, T. Suzuki, T. Ichimura, Catal. Commun. 2007, 8, 2194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ght7fK&md5=a6c63bcdfe2e9e827ffec2448779a43fCAS |
[29] K. S. Elvira, X. Casadevall i Solvas, R. C. R. Wootton, A. J. deMello, Nat. Chem. 2013, 2015, 905.
[30] O. Shvydkiv, A. Yavorskyy, K. Nolan, A. Youssef, E. Riguet, N. Hoffmann, M. Oelgemöller, Photochem. Photobiol. Sci. 2010, 9, 1601.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOktbvJ&md5=b5475afad9f8392c161be9c0e7b6ad31CAS | 20931135PubMed |
[31] S. A. M. W. van den Broek, R. Becker, K. Koch, P. J. Nieuwland, Micromachines 2012, 3, 244.
| Crossref | GoogleScholarGoogle Scholar |
[32] N. Hoffmann, Tetrahedron Asymmetry 1994, 5, 879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlerur0%3D&md5=7c56a4d500e71091acc509967ebde4aaCAS |
[33] S. Bertrand, C. Glapski, N. Hoffmann, J. P. Pete, Tetrahedron Lett. 1999, 40, 3169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1ertbo%3D&md5=e5c135dcead615bfbadb66d3c0cda985CAS |
[34] J.-T. Li, J.-H. Yang, J.-F. Han, T.-S. Li, Green Chem. 2003, 5, 433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFGrsLc%3D&md5=c8b8c0c893a8c11c892d54bee4a912bfCAS |
[35] N. J. Pitts, R. L. Letsinger, R. P. Taylor, J. M. Patterson, G. Recktenwald, R. B. Martin, J. Am. Chem. Soc. 1959, 81, 1068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXms1Chsg%3D%3D&md5=cfa291e5a4599f5d08148bd682c433e3CAS |
[36] S. Meyer, D. Tietze, S. Rau, B. Schäfer, G. Kreisel, J. Photochem. Photobiol. Chem. 2007, 186, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gitbw%3D&md5=f606457a5d0efa2375b2866e6fdafbf9CAS |
[37] A. Yavorskyy, O. Shvydkiv, N. Hoffmann, K. Nolan, M. Oelgemöller, Org. Lett. 2012, 14, 4342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wqu7zO&md5=48a6142c791602bc59a13d3029a7eb76CAS | 22905680PubMed |
[38] A. Pohar, I. Plazl, Chem. Biochem. Eng. Q. 2009, 23, 537.
| 1:CAS:528:DC%2BC3cXhtlKiu7s%3D&md5=17141fb4240de4f5a54cbce0bc90e919CAS |
[39] L. Malet-Sanz, F. Susanne, J. Med. Chem. 2012, 55, 4062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSqtLc%3D&md5=864dba17f68776a28470b488ea81c56aCAS | 22283413PubMed |
[40] A. E. Rubin, S. Tummala, D. A. Both, C. C. Wang, E. J. Delaney, Chem. Rev. 2006, 106, 2794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVagsr8%3D&md5=81af6173bfafd94743e5a3c9fcf489abCAS | 16836299PubMed |
[41] S. Bertrand, N. Hoffmann, J. P. Pete, Eur. J. Org. Chem. 2000, 2227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1yqsbg%3D&md5=c315f0d52e1e94c8b09dedd4b3088436CAS |
[42] J. R. Poulsen, K. S. Birks, M. S. Gandelman, J. W. Birks, Chromatographia 1986, 22, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXpsFaruw%3D%3D&md5=b717dd1369d82925229812ec4a52aa3cCAS |
[43] K. Tomioka, M. Tanaka, K. Koga, Chem. Pharm. Bull. 1989, 37, 1201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpvVylsQ%3D%3D&md5=06adca1f25ba7925c82d578d8d4c894bCAS |
[44] M. Tada, T. Kokubo, T. Sato, Tetrahedron 1972, 28, 2121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhsVOiu74%3D&md5=1399f2a48db066ead20606122f5e33e0CAS |
[45] S. Bachollet, K. Terao, Y. Nishiyama, K. Kakiuchi, M. Oelgemöller, Beilstein J. Org. Chem. 2013, 9, 2015.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cqt7nK&md5=d1b420f8a5d4e22acb093d75cb56f77aCAS | 24204412PubMed |
[46] S. G. Newman, K. F. Jensen, Green Chem. 2013, 15, 1456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1egsbw%3D&md5=e6a2f0a2f1fe249a96b20884a510a254CAS |
[47] W. R. Melchert, B. F. Reis, F. R. P. Rocha, Anal. Chim. Acta 2012, 714, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1enug%3D%3D&md5=7beceaf4f2e018cd08e081ab283ad340CAS | 22244133PubMed |
[48] A. Wiles, P. Watts, Green Chem. 2012, 14, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWiuw%3D%3D&md5=e3ade01a3b657c6d0705bee46aa3b8d9CAS |
[49] S. Werner, R. Seliger, H. Rauter, F. Wissmann, EP-2065387A2 2009 Chem. Abstr. 2009, 150, 376721.