DABCO Promoted Regioselective Synthesis of New Diversely Functionalized 3-Hydroxy-2-Oxindole Scaffolds
Pramod B. Thakur A , Jagdeesh B. Nanubolu B and Harshadas M. Meshram A CA Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
B Laboratory of X-Ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
C Corresponding author. Email: hmmeshram@yahoo.com
Australian Journal of Chemistry 67(5) 768-776 https://doi.org/10.1071/CH13580
Submitted: 27 October 2013 Accepted: 19 December 2013 Published: 31 January 2014
Abstract
An efficient and highly regioselective γ-addition of β-keto sulfones on isatins has been achieved in the presence of a catalytic amount of 1,4-diazabicyclo[2.2.2]octane (DABCO) to afford a γ-(3-hydroxy-2-oxindole)-β-keto sulfone structural framework. The scope of the method is tested by screening a series of isatin electrophiles as well as β-keto sulfones. The described method was found to be very handy and provides straightforward access for the diversely functionalized 3-β-keto sulfone substituted-3-hydroxy-2-oxindole structural scaffolds in very good yields from readily available starting materials under metal-free reaction conditions.
References
[1] (a) T. Tokunaga, W. E. Hume, T. Umezome, K. Okazaki, Y. Ueki, K. Kumagai, S. Hourai, J. Nagamine, H. Seki, H. Taiji, H. Noguchi, R. Nagata, J. Med. Chem. 2001, 44, 4641.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlKkurs%3D&md5=52a6a3d458c9db3a999e6886f9800cd1CAS | 11741481PubMed |
(b) A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103, 2945.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. P. Michael, Nat. Prod. Rep. 2005, 22, 627.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Kagata, S. Saito, H. Shigemori, A. Ohsaki, H. Ishiyama, T. Kubota, J. Kobayashi, J. Nat. Prod. 2006, 69, 1517.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Peddibhotla, Curr. Bioact. Compd. 2009, 5, 20.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. J. Badillo, N. V. Hanhan, A. K. Franz, Curr. Opin. Drug Discov. Dev. 2010, 13, 758.
(g) C. Marti, E. M. Carreira, Eur. J. Org. Chem. 2003, 2209.
| Crossref | GoogleScholarGoogle Scholar |
(h) C. V. Galliford, K. A. Scheidt, Angew. Chem. Int. Ed. 2007, 46, 8748.
| Crossref | GoogleScholarGoogle Scholar |
(i) H. Lin, S. J. Danishefsky, Angew. Chem. Int. Ed. 2003, 42, 36.
| Crossref | GoogleScholarGoogle Scholar |
(j) F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) E. N. Prilezhaeva, Russ. Chem. Rev. 2000, 69, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVGhu7c%3D&md5=3bc2987fe5a45f3b2fad45e98017f014CAS |
(b) C. Jacob, Nat. Prod. Rep. 2006, 23, 851.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Khanum, K. R. Anilakumar, K. R. Viswanathan, Crit. Rev. Food Sci. Nutr. 2004, 44, 479.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. G. Renwick, in Biological Interactions of Sulfur Compounds (Ed. S. Mitchell) 1996, pp. 42–76 (Taylor & Francis: London).
[3] S. Trivedi, P. C. Patidar, P. K. Chaurasiya, R. S. Pawar, U. K. Patil, P. K. Singour, Der Pharma Chemica 2010, 2, 369.
| 1:CAS:528:DC%2BC3cXhtl2nu7rJ&md5=43c2ba6053781f2e6badfbc5ae9af2c9CAS |
[4] J. Xiang, M. Ipek, V. Suri, M. Tam, Y. Xing, N. Huang, Y. Zhang, J. Tobin, T. S. Mansour, J. McKew, Bioorg. Med. Chem. 2007, 15, 4396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFSjsrg%3D&md5=e8cd81ca987956274b406f52709079eaCAS | 17490884PubMed |
[5] (a) T. Itoh, H. Ishikawa, Y. Hayashi, Org. Lett. 2009, 11, 3854.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFSjsbk%3D&md5=4abefb6bc083af9fbb735fe863e9bd94CAS | 19655732PubMed |
(b) F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381.
| Crossref | GoogleScholarGoogle Scholar |
(c) X.-Y. Guan, Y. Wei, M. Shi, Chem. – Eur. J. 2010, 16, 13617.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y.-L. Liu, B.-L. Wang, J.-J. Cao, L. Chen, Y.-X. Zhang, C. Wang, J. Zhou, J. Am. Chem. Soc. 2010, 132, 15176.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. Zheng, C.-K. Yin, X.-H. Liu, L.-L. Lin, X.-M. Feng, Angew. Chem. Int. Ed. 2011, 50, 2573.
| Crossref | GoogleScholarGoogle Scholar |
(f) G.-G. Liu, H. Zhao, Y.-B. Lan, B. Wu, X.-F. Huang, J. Chen, J.-C. Tao, X.-W. Wang, Tetrahedron 2012, 68, 3843.
[6] (a) F. Xue, S.-L. Zhang, L. Liu, W.-H. Duan, W. Wang, Chem. Asian J. 2009, 4, 1664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGis7rJ&md5=eb270906270a1b39c771197ddc45b422CAS | 19746510PubMed |
(b) N. Hara, S. Nakamura, N. Shibata, T. Toru, Chem. – Eur. J. 2009, 15, 6790.
| Crossref | GoogleScholarGoogle Scholar |
(c) W.-B. Chen, X.-L. Du, L.-F. Cun, X.-M. Zhang, W.-C. Yuan, Tetrahedron 2010, 66, 1441.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q. Guo, J. C.-G. Zhao, Tetrahedron Lett. 2012, 53, 1768.
| Crossref | GoogleScholarGoogle Scholar |
[7] E. Zrike, H. G. Lindwall, J. Am. Chem. Soc. 1936, 58, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA28XhtlCqtw%3D%3D&md5=626d96a30abc517dbc28f4bdfe748795CAS |
[8] H. G. Lindwall, A. J. Hill, J. Am. Chem. Soc. 1935, 57, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXivVejsQ%3D%3D&md5=c4783acdd79b449903060f91142d99efCAS |
[9] (a) H.-J. Teuber, J. Hohn, Chem. Ber. 1982, 115, 90.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhsVagsro%3D&md5=527b32874b8c4ae0ca04d35fc98699a6CAS |
(b) S. A. M. Metwally, M. I. Younes, H. H. Abbas, Acta Chim. Hung. 1989, 126, 591.
(c) L. E. Overman, E. A. Peterson, Angew. Chem. Int. Ed. 2003, 42, 2525.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) R. N. DuPuis, H. G. Lindwall, J. Am. Chem. Soc. 1934, 56, 2716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXmtFym&md5=ad6ac83e6e109afd054c32ebb75d2bedCAS |
(b) A. H. Cook, J. R. A. Pollock, J. Chem. Soc. 1949, 3007.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Pfeiffer, H. Bauer, Liebigs Ann. Chem. 1980, 564.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. Hara, S. Nakamura, Y. Funahashi, N. Shibata, Adv. Synth. Catal. 2011, 353, 2976.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. V. Lakshmi, Y. Arun, P. T. Perumal, Tetrahedron Lett. 2011, 52, 3437.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) F. D. Popp, Adv. Heterocycl. Chem. 1975, 18, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1WmtL8%3D&md5=20a9db74f11cbf00750da3b52e0c5345CAS |
(b) J. F. M. da Silva, S. J. Garden, A. C. Pinto, J. Braz. Chem. Soc. 2001, 12, 273.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) T. G. Back, K. N. Clary, D. Gao, Chem. Rev. 2010, 110, 4498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFeqsbY%3D&md5=396dbe56debd9a1285009628d4f29ef4CAS | 20438124PubMed |
(b) N. S. Simpkins, Sulfones in Organic Synthesis 1993 (Pergamon Press: Oxford).
[13] (a) B. Yin, Y. Zhang, L. W. Xu, Synthesis 2010, 3583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGnurjM&md5=571103a667c27f6b6318688508b5fdeeCAS |
(b) B. Zajc, R. Kumar, Synthesis 2010, 1822.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Aissa, Eur. J. Org. Chem. 2009, 1831.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Honma, H. Takeda, M. Takano, M. Nakada, Synlett 2009, 1695.
[14] (a) A. R. Alba, X. Companyo, R. Rios, Chem. Soc. Rev. 2010, 39, 2018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFersLc%3D&md5=ff34616611a635067d40e914373aac9cCAS |
(b) M. Nielsen, C. B. Jacobsen, N. Holub, M. W. Paixao, K. A. Joergensen, Angew. Chem. Int. Ed. 2010, 49, 2668.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Crich, A. A. Bowers, in Handbook of Chemical Glycosylation (Ed. A. V. Demchenko) 2008, pp. 303–329 (Wiley-VCH: Weinheim).
(d) M. Tiwari, D. Kishore, Int. J. Chem. Sci 2007, 5, 2454.
[15] (a) N. Suryakiran, P. Prabhakar, T. S. Reddy, K. C. Mahesh, K. Rajesh, Y. Venkateswarlu, Tetrahedron Lett. 2007, 48, 877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFCrsA%3D%3D&md5=99c2fd95dd3d590df6057d5db54dc839CAS |
(b) H. Loghmani-Khouzani, M. R. Poorheravi, M. M. M. Sadeghi, L. Caggiano, R. F. W. Jackson, Tetrahedron 2008, 64, 7419.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Kumar, S. M. Swapna, G. Patel, V. S. Rao, R. S. Varma, Tetrahedron Lett. 2006, 47, 8239.
| Crossref | GoogleScholarGoogle Scholar |
(d) O. García Mancheño, P. Tangen, R. Rohlmann, R. Fröhlich, J. Alemán, Chem. – Eur. J. 2011, 17, 984.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Enders, A. Grossmann, H. Huang, G. Raabe, Eur. J. Org. Chem. 2011, 4298.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. Alemán, V. Marcos, L. Marzo, J. L. García Ruano, Eur. J. Org. Chem. 2010, 4482.
(g) X. Sun, F. Yu, T. Ye, X. Liang, J. Ye, Chem. – Eur. J. 2011, 17, 430.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. M. McQuaid, J. Z. Long, D. Sames, Org. Lett. 2009, 11, 2972.
| Crossref | GoogleScholarGoogle Scholar |
(i) A. M. Bernard, A. Frongia, P. P. Piras, F. Secci, M. Spiga, Org. Lett. 2005, 7, 4565.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) V. Fargeas, M. Baalouch, E. Metay, J. Baffreau, D. Menard, P. Gosselin, J.-P. Berge, C. Barthomeuf, J. Lebreton, Tetrahedron 2004, 60, 10359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGltb0%3D&md5=f1aa4e6df04d9b846b15f5013786d051CAS |
(b) F. Lacrampe, F. Leost, A. Doutheau, Tetrahedron Lett. 2000, 41, 4773.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Wada, W. Pei, H. Yasuoka, U. Chin, S. Kanemasa, Tetrahedron 1996, 52, 1205.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) P. B. Thakur, K. Sirisha, A. V. S. Sarma, J. B. Nanubolu, H. M. Meshram, Tetrahedron 2013, 69, 6415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFKltrg%3D&md5=7764f0e0069daa4dd868cfd98a502442CAS |
(b) H. Liu, H. Wu, Z. Luo, J. Shen, G. Kang, B. Liu, Z. Wan, J. Jiang, Chem. – Eur. J. 2012, 18, 11899.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) H. M. Meshram, P. Ramesh, B. C. Reddy, B. Shreedhar, J. S. Yadav, Tetrahedron 2011, 67, 3150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt12ktr0%3D&md5=46cfad7d1ccc98bb8886dc53e0cc0e6eCAS |
(b) H. M. Meshram, D. A. Kumar, P. Ramesh, B. C. Reddy, Synth. Commun. 2009, 40, 39.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. M. Meshram, P. Ramesh, A. S. Kumar, A. Swetha, Tetrahedron Lett. 2011, 52, 5862.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. M. Meshram, R. N. Nageswara, R. L. Chandrasekhara, S. N. Kumar, Tetrahedron Lett. 2012, 53, 3963.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) H. M. Meshram, B. C. Reddy, B. R. V. Prasad, P. R. Goud, G. S. Kumar, N. R. Kumar, Synth. Commun. 2012, 42, 1669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFynsrw%3D&md5=35c5caed5aaa7fa954d654fa0e26e1c6CAS |
(b) H. M. Meshram, G. S. Kumar, P. Ramesh, B. C. Reddy, Tetrahedron Lett. 2010, 51, 2580.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. M. Meshram, V. M. Bangade, B. C. Reddy, G. S. Kumar, P. B. Thakur, Int. J. Org. Chem. 2012, 2, 159.
| Crossref | GoogleScholarGoogle Scholar |