Cobalt-Mediated Decarboxylative Homocoupling of Alkynyl Carboxylic Acids
Michael G. Leeming A B C , George N. Khairallah A B C D , Sandra Osburn A B C , Krista Vikse A B C and Richard A. J. O’Hair A B C DA School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.
B Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Vic. 3010, Australia.
C ARC Centre of Excellence in Free Radical Chemistry and Biotechnology, University of Melbourne, Melbourne, Vic. 3010, Australia.
D Corresponding authors. Email: gkhai@unimelb.edu.au; rohair@unimelb.edu.au
Australian Journal of Chemistry 67(5) 701-710 https://doi.org/10.1071/CH13564
Submitted: 18 October 2013 Accepted: 22 November 2013 Published: 14 January 2014
Abstract
Cobalt-mediated decarboxylative Glaser-like C–C bond coupling of carboxylates has been studied in the gas phase using collision-induced dissociation (CID) multistage mass spectrometry (MSn) experiments. Both the identity of the carboxylate RCO2– (R = Me, HC≡C, MeC≡C, and PhC≡C) and the nuclearity of the complex ([CoCl(O2CR)2]– versus [Co2Cl3(O2CR)2]–) play a role in the types of reactions observed and their relative activation energies. In the first stage of CID, the mononuclear complex [CoCl(O2CMe)2]– undergoes decarboxylation, while the dinuclear [Co2Cl3(O2CMe)2]– undergoes cluster fission to yield [CoCl3]–; all acetylenic carboxylate complexes [CoCl(O2CR)2]– and [Co2Cl3(O2CR)2]– undergo decarboxylation. Isolation of the decarboxylated products followed by a second stage of CID results in a second decarboxylation event for all systems except for [CoCl(Me)(O2CMe)]–, which undergoes bond homolysis. In the final stage of CID, all acetylenic complexes undergo Glaser coupling, forming reduced Co anions. Overall dinuclear cobalt clusters are superior to mononuclear complexes at promoting decarboxylation and reductive coupling. The order of reactivity among the acetylide ligands is PhC≡C > MeC≡C > HC≡C.
References
[1] C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslKntL4%3D&md5=0fef9be16671dc6f9308346d73ae9c79CAS |
[2] (a) C. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Glaser, Liebigs Ann. Chem. 1870, 154, 137.
| Crossref | GoogleScholarGoogle Scholar |
[3] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 2000, 39, 2632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCjt7Y%3D&md5=4708164cc03c01c89c38a7ea97a07038CAS |
[4] (a) A. L. K. Shi Shun, R. R. Tykwinski, Angew. Chem. Int. Ed. 2006, 45, 1034.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. B. Nielsen, F. Diederich, Chem. Rev. 2005, 105, 1837.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. Vlassa, I. Ciocan-Tarta, F. Margineanu, I. Oprean, Tetrahedron 1996, 52, 1337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVWmtA%3D%3D&md5=ec89808a7970c319968cb97928a5799dCAS |
(b) Q. Liu, D. J. Burton, Tetrahedron Lett. 1997, 38, 4371.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Lei, M. Srivastava, X. Zhang, J. Org. Chem. 2002, 67, 1969.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. H. Li, Y. Liang, Y. X. Xie, J. Org. Chem. 2005, 70, 4393.
| Crossref | GoogleScholarGoogle Scholar |
[6] P. Bharathi, M. Periasamy, Organometallics 2000, 19, 5511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvFSrt70%3D&md5=0ed5dca8817d8d56ed7264f428a511baCAS |
[7] G. Cahiez, A. Moyeux, J. Buendia, C. Duplais, J. Am. Chem. Soc. 2007, 129, 13788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOitb%2FI&md5=7e7b8caf06768cf949d572ad6d79d2ffCAS | 17944469PubMed |
[8] M. Zhu, M. Ning, W. Fu, C. Xu, G. Zou, Bull. Korean Chem. Soc. 2012, 33, 1325.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. L. Pauson, I. U. Khand, Ann. N. Y. Acad. Sci. 1977, 295, 2.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhslShsrc%3D&md5=fe6b184ffef871d8fbf048a14bc7a4deCAS |
[10] (a) J. Blanco-Urgoiti, L. Añorbe, L. Pérez-Serrano, G. Domínguez, J. Pérez-Castells, Chem. Soc. Rev. 2004, 33, 32.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2ksLk%3D&md5=8dcd19551f946efd6d5464e5dfef7769CAS | 14737507PubMed |
(b) L. V. R. Boñaga, M. E. Krafft, Tetrahedron 2004, 60, 9795.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. E. Gibson, A. Stevenazzi, Angew. Chem. Int. Ed. 2003, 42, 1800.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. E. Krafft, C. Hirosawa, N. Dalal, C. Ramsey, A. Stiegman, Tetrahedron Lett. 2001, 42, 7733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsV2ku7g%3D&md5=f63d892175d9928b3faea15b2cc7de40CAS |
[12] (a) K. T. Quisenberry, T. P. Hanusa, Cobalt: Organometallic Chemistry, in Encyclopedia of Inorganic Chemistry 2006.
(b) I. Omae, Appl. Organomet. Chem. 2007, 21, 318.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Hess, J. Treutwein, G. Hilt, Synthesis 2008, 22, 3537.
(d) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) H. H. Schlubach, V. I. Franzen, Liebigs Ann. Chem. 1951, 572, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXmtVSgtA%3D%3D&md5=f5052456fe9bca5f42319cdeef936c1eCAS |
(b) H. K. Black, D. H. S. Horn, B. C. L. Weedon, J. Chem. Soc. 1954, 1704.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) For reviews on the use of metal catalysed decarboxylation reactions in synthesis, see: L. J. Gooßen, K. Gooßen, N. Rodriguez, M. Blanchot, C. Linder, B. Zimmermann, Pure Appl. Chem. 2008, 80, 1725.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. J. Gooßen, N. Rodriguez, K. Gooßen, Angew. Chem. Int. Ed. 2008, 47, 3100.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. J. Goossen, F. Collet, K. Goossen, Isr. J. Chem. 2010, 50, 617.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. D. Weaver, A. Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. Rodriguez, L. J. Goossen, Chem. Soc. Rev. 2011, 40, 5030.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. Shang, L. Liu, Science China Chem. 2011, 54, 1670.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. Cornella, I. Larrosa, Synthesis 2012, 653.
(h) W. I. Dzik, P. P. Lange, L. J. Goossen, J. Chem. Sci. 2012, 3, 2671.
| Crossref | GoogleScholarGoogle Scholar |
(i) L. J. Gooßen, K. Gooßen, Top. Organomet. Chem. 2013, 44, 121.
| Crossref | GoogleScholarGoogle Scholar |
(j) K. Park, S. Lee, RSC Adv. 2013, 3, 14165.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) R. A. J. O’Hair, Chem. Commun. 2002, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFemsw%3D%3D&md5=9983ad5975a58dbbcc5088a1fc0ff374CAS |
(b) R. A. J. O’Hair, A. K. Vrkic, P. F. James, J. Am. Chem. Soc. 2004, 126, 12173.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. F. James, R. A. J. O’Hair, Org. Lett. 2004, 6, 2761.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. P. Jacob, P. F. James, R. A. J. O’Hair, Int. J. Mass Spectrom. 2006, 255–256, 45.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. Rijs, T. Waters, G. N. Khairallah, R. A. J. O’Hair, J. Am. Chem. Soc. 2008, 130, 1069.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. N. Khairallah, T. Waters, R. A. J. O’Hair, Dalton Trans. 2009, 2832.
| Crossref | GoogleScholarGoogle Scholar |
(g) N. J. Rijs, B. F. Yates, R. A. J. O’Hair, Chem. – Eur. J. 2010, 16, 2674.
| Crossref | GoogleScholarGoogle Scholar |
(h) N. J. Rijs, R. A. J. O’Hair, Organometallics 2010, 29, 2282.
| Crossref | GoogleScholarGoogle Scholar |
(i) N. J. Rijs, G. B. Sanvido, G. N. Khairallah, R. A. J. O’Hair, Dalton Trans. 2010, 39, 8655.
| Crossref | GoogleScholarGoogle Scholar |
(j) N. J. Rijs, N. Yoshikai, E. Nakamura, R. A. J. O’Hair, J. Am. Chem. Soc. 2012, 134, 2569.
| Crossref | GoogleScholarGoogle Scholar |
(k) G. N. Khairallah, E. J. H. Yoo, R. A. J. O’Hair, Organometallics 2010, 29, 1238.
| Crossref | GoogleScholarGoogle Scholar |
(l) M. G. Leeming, G. N. Khairallah, G. da Silva, R. A. J. O’Hair, Organometallics 2011, 30, 4297.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) G. N. Khairallah, C. Thum, R. A. J. O’Hair, Organometallics 2009, 28, 5002.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFars7g%3D&md5=73d58051536f049df1cac482e342e7b5CAS |
(b) G. N. Khairallah, C. C. L. Thum, D. Lesage, J.-C. Tabet, R. A. J. O’Hair, Organometallics 2013, 32, 2319.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. N. Khairallah, C. M. Williams, S. Chow, R. A. J. O’Hair, Dalton Trans. 2013, 42, 9462.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) N. J. Rijs, R. A. J. O’Hair, Organometallics 2012, 31, 8012.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKltr7I&md5=292fdc7310d4eb9096d543122b252257CAS |
(b) H. Al Sharif, K. L. Vikse, G. N. Khairallah, R. A. J. O’Hair, Organometallics 2013, 32, 5416.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. A. J. O’Hair, T. Waters, B. Cao, Angew. Chem. Int. Ed. 2007, 46, 7048.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. C. L. Thum, G. N. Khairallah, R. A. J. O’Hair, Angew. Chem. Int. Ed. 2008, 47, 9118.
| Crossref | GoogleScholarGoogle Scholar |
[18] F. Q. Wang, G. N. Khairallah, G. A. Koutsantonis, C. M. Williams, D. L. Callahan, R. A. J. O’Hair, Phys. Chem. Chem. Phys. 2009, 11, 4132.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCiur4%3D&md5=4c43419d895eb003a2e4cc951bcb5e56CAS | 19458814PubMed |
[19] Y. Kim, A. Park, K. Park, S. Lee, Tetrahedron Lett. 2011, 52, 1766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGksLg%3D&md5=d04c6da6cf3716bf80557af555c9af6cCAS |
[20] M. Radon, M. Srebro, E. Broclawik, J. Chem. Theory Comput. 2009, 5, 1237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlyhurs%3D&md5=cdeb742019045027ab22bf057a98cf5cCAS |
[21] (a) A. G. Blackman, Cobalt: Inorganic & Coordination Chemistry, in Encyclopedia of Inorganic Chemistry 2006.
(b) P. V. Bernhardt, G. A. Lawrance, in Comprehensive Coordination Chemistry II (Eds J. A. McCleverty, T. J. Meyer) 2003, Vol. 6, Ch. 1, pp. 1–45 (Elsevier: Amsterdam).
(c) U. P. Singh, P. Babbar, A. K. Sharma, Inorg. Chim. Acta 2005, 358, 271.
| Crossref | GoogleScholarGoogle Scholar |
(d) U. P. Singh, V. Aggarwal, A. K. Sharma, Inorg. Chim. Acta 2007, 360, 3226.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Denham, C. Zimmermann, Eur. J. Inorg. Chem. 2000, 1471.
(f) C. Stoll, I –P Lorenz, K. Polburn, E. F. Paulus, Z. Naturforsch. B: Chem. Sci. 1999, 583.
(g) J. Catterick, M. B. Hursthouse, P. Thornton, A. J. Welch, J. Chem. Soc., Dalton Trans. 1977, 223.
| Crossref | GoogleScholarGoogle Scholar |
(h) P. Chaudhuri, J. Querbach, K. Wieghardt, B. Nuber, J. Weiss, J. Chem. Soc., Dalton Trans. 1990, 271.
| Crossref | GoogleScholarGoogle Scholar |
(i) A. M. Guidote, K.-I. Ando, Y. Kurusu, H. Nagao, Y. Masuyama, Inorg. Chim. Acta 2001, 314, 27.
| Crossref | GoogleScholarGoogle Scholar |
(j) G. S. Siluvai, N. N. Murthy, Inorg. Chim. Acta 2009, 362, 3119.
| Crossref | GoogleScholarGoogle Scholar |
[22] A. Colorado, J. Broadbelt, J. Am. Soc. Mass Spectrom. 1996, 7, 1116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsF2lur0%3D&md5=d327fddf3cf0d0f3cdb41a855649467eCAS | 24203074PubMed |
[23] (a) K. Vekey, J. Mass Spectrom. 1996, 31, 445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVentbo%3D&md5=0831173ac2eb085572fca6a6e49b5676CAS |
(b) S. Osburn, S. Ochola, E. Talaty, M. Van Stipdonk, Rapid Commun. Mass Spectrom. 2007, 21, 3409.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. L. Jones, A. R. Dongre, A. Somogyi, V. H. Wysocki, J. Am. Chem. Soc. 1994, 116, 8368.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) A. G. Brenton, R. P. Morgan, J. H. Beynon, Annu. Rev. Phys. Chem. 1979, 30, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXivFSkug%3D%3D&md5=2538f739fb6e06b0aa053b685cc48b3bCAS |
(b) T. Baer, W. L. Hase, Unimolecular Reaction Dynamics – Theory and Experiments 1996, Ch. 6 and 7, pp. 171–281 (Oxford University Press: Oxford).
[25] L. MacAleese, P. Maître, Mass Spectrom. Rev. 2007, 26, 583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1KltLg%3D&md5=803d6cf3cfbe3d650cd4bbb5b7c6f83dCAS | 17471578PubMed |
[26] B. M. Reinhard, A. Lagutschenkov, J. Lemaire, P. Boissel, P. Maitre, G. Niedner-Schatteburg, J. Phys. Chem. 2004, 108, 3350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFaqur0%3D&md5=30bebc33e2fa7803938a4748931c5c44CAS |
[27] H. Lang, D. S. A. George, G. Rheinwald, Coord. Chem. Rev. 2000, 206–207, 101.
| Crossref | GoogleScholarGoogle Scholar |
[28] Data from NIST Standard Reference Database 69: NIST Chemistry WebBook. Available at http://webbook.nist.gov/chemistry/ (accessed 23 September 2013).
[29] P. J. Low, M. I. Bruce, Adv. Organomet. Chem. 2001, 48, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVSjsg%3D%3D&md5=ecf13eb06f448c42c2c00ea7fd09cd9dCAS |
[30] R. A. J. O’Hair, Chem. Commun. 2006, 1469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFOlsrk%3D&md5=ca6de97df15a7c5a2bff8f28ccfd151dCAS |