Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Minimalist Approaches to Protein Labelling: Getting the Most Fluorescent Bang for Your Steric Buck

Lee C. Speight A B , Moumita Samanta A B and E. James Petersson A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA.

B These authors contributed equally to this work.

C Corresponding author. Email: ejpetersson@sas.upenn.edu




Lee C. Speight graduated from The College of William and Mary in 2009 with a B.Sc. in Chemistry. During this time he worked in the laboratory of Professor R. J. Hinkle and studied the bismuth(iii) catalysed disastereospecific syntheses of cis-2,6-dihydropyrans. In 2009, he commenced his doctoral studies at the University of Pennsylvania in the laboratory of Professor E. J. Petersson. In the last few years, he has investigated the in vitro incorporation of backbone thioamides and devised improved syntheses of acridone amino acids, as well as pioneering in vivo methods for their ribosomal incorporation into proteins. His research interests include sustainable chemical synthesis methods, such as biocatalysis and ribosomal translation.



Moumita Samanta obtained her Ph.D. in Biophysics from the Indian Institute of Science under the supervision of Professor P. Balaram in 2011. Her first postdoctoral research position was at Baylor College of Medicine at Houston (TX, USA) with Professor Timothy G. Palzkill, and she is currently a Postdoctoral Researcher in the Petersson group at University of Pennsylvania (since 2012). Her current research area involves investigation of conformational motion in proteins using unnatural amino acids as fluorescent tags.



E. James Petersson pursued his undergraduate education at Dartmouth College, where he worked in the laboratory of David Lemal. He then studied under Dennis Dougherty at the California Institute of Technology. After receiving his Ph.D. from Caltech in 2005, Petersson was a National Institutes of Health Postdoctoral Fellow at Yale University with Alanna Schepartz. He was appointed as an Assistant Professor in the Department of Chemistry at the University of Pennsylvania in 2008. His work in developing protein labelling methods has been recognized by his selection as a Searle Scholar and a Sloan Research Fellow, as well as receipt of the 2013 Early Excellence in Physical Organic Chemistry Award, presented at the Physical Organic Chemistry Gordon Research Conference.

Australian Journal of Chemistry 67(5) 686-700 https://doi.org/10.1071/CH13554
Submitted: 12 October 2013  Accepted: 5 December 2013   Published: 30 January 2014

Abstract

Fluorescence methods allow one to monitor protein conformational changes, protein–protein associations, and proteolysis in real time, at the single molecule level and in living cells. The information gained in such experiments is a function of the spectroscopic techniques used and the strategic placement of fluorophore labels within the protein structure. There is often a trade-off between size and utility for fluorophores, whereby large size can be disruptive to the protein’s fold or function, but valuable characteristics, such as visible wavelength absorption and emission or brightness, require sizable chromophores. Three major types of fluorophore readouts are commonly used: (1) Förster resonance energy transfer (FRET); (2) photoinduced electron transfer (PET); and (3) environmental sensitivity. This review focuses on those probes small enough to be incorporated into proteins during ribosomal translation, which allows the probes to be placed on the interiors of proteins as they are folded during synthesis. The most broadly useful method for doing so is site-specific unnatural amino acid (UAA) mutagenesis. We discuss the use of UAA probes in applications relying on FRET, PET, and environmental sensitivity. We also briefly review other methods of protein labelling and compare their relative merits to UAA mutagenesis. Finally, we discuss small probes that have thus far been used only in synthetic peptides, but which have unusual value and may be candidates for incorporation using UAA methods.


References

[1]  O. Shimomura, F. H. Johnson, Y. Saiga, J. Cell. Comp. Physiol. 1962, 59, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksFSrt7k%3D&md5=37dd082b801cc7046720e1e351ac47a2CAS | 13911999PubMed |

[2]  R. Y. Tsien, Annu. Rev. Biochem. 1998, 67, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOmsb8%3D&md5=7a9dbe8e7d6e657a33b84403607c5c8dCAS | 9759496PubMed |

[3]  H. J. Carlson, R. E. Campbell, Curr. Opin. Biotechnol. 2009, 20, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWgsrw%3D&md5=d0a9ddf411066a823bd5de42eff5d65eCAS | 19223167PubMed |

[4]  G. V. Los, L. P. Encell, M. G. McDougall, D. D. Hartzell, N. Karassina, C. Zimprich, M. G. Wood, R. Learish, R. F. Ohane, M. Urh, D. Simpson, J. Mendez, K. Zimmerman, P. Otto, G. Vidugiris, J. Zhu, A. Darzins, D. H. Klaubert, R. F. Bulleit, K. V. Wood, ACS Chem. Biol. 2008, 3, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGru7k%3D&md5=ab182c5a965c522467b34b4181140eadCAS | 18533659PubMed |

[5]  A. Keppler, M. Kindermann, S. Gendreizig, H. Pick, H. Vogel, K. Johnsson, Methods 2004, 32, 437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslemtL8%3D&md5=150791c309cf42314ae0858a514e8441CAS | 15003606PubMed |

[6]  A. Gautier, A. Juillerat, C. Heinis, I. R. Correa, M. Kindermann, F. Beaufils, K. Johnsson, Chem. Biol. 2008, 15, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlKitbg%3D&md5=54b8b22fa9ac0ac61a50de4280f5e5c4CAS | 18291317PubMed |

[7]  L. W. Miller, Y. F. Cai, M. P. Sheetz, V. W. Cornish, Nat. Methods 2005, 2, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFejtbk%3D&md5=20a01f931ebcec983b724b4e5cd61bf2CAS | 15782216PubMed |

[8]  S. S. Gallagher, J. E. Sable, M. P. Sheetz, V. W. Cornish, ACS Chem. Biol. 2009, 4, 547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFWktLc%3D&md5=b4cdbcba93003f2ad9df958ca89b54bcCAS | 19492849PubMed |

[9]  B. A. Griffin, S. R. Adams, R. Y. Tsien, Science 1998, 281, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFKgs78%3D&md5=a57119538d9e678dc60e3cdac821dd52CAS | 9657724PubMed |

[10]  J. Nakanishi, T. Takarada, S. Yunoki, Y. Kikuchi, M. Maeda, Biochem. Biophys. Res. Commun. 2006, 343, 1191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFahsrY%3D&md5=62eab89c99f181704123077435d8a4c6CAS | 16580633PubMed |

[11]  C. Hoffmann, G. Gaietta, M. Bunemann, S. R. Adams, S. Oberdorff-Maass, B. Behr, J. P. Vilardaga, R. Y. Tsien, M. H. Eisman, M. J. Lohse, Nat. Methods 2005, 2, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVGisro%3D&md5=a62089720f0247982c6e4e519e88b47aCAS | 15782185PubMed |

[12]  M. Andresen, R. Schmitz-Salue, S. Jakobs, Mol. Biol. Cell 2004, 15, 5616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGlsLbO&md5=f491392907d2c13d1bdfb28206615369CAS | 15469986PubMed |

[13]  O. Dyachok, Y. Isakov, J. Sagetorp, A. Tengholm, Nature 2006, 439, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvF2ltw%3D%3D&md5=ef4d14cd268d42e8a2edb220a1b77ee1CAS | 16421574PubMed |

[14]  J. Enninga, J. Mounier, P. Sansonetti, G. T. Van Nhieu, Nat. Methods 2005, 2, 959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aksr3N&md5=e01f3441c3dd6ac07d0c381455e933d2CAS | 16299482PubMed |

[15]  S. R. Adams, R. E. Campbell, L. A. Gross, B. R. Martin, G. K. Walkup, Y. Yao, J. Llopis, R. Y. Tsien, J. Am. Chem. Soc. 2002, 124, 6063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Krsbs%3D&md5=104c59af51d98a265282f30df260d267CAS | 12022841PubMed |

[16]  H. Cao, B. Chen, T. C. Squier, M. U. Mayer, Chem. Commun. 2006, 2601,
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. W. Luedtke, R. J. Dexter, D. B. Fried, A. Schepartz, Nat. Chem. Biol. 2007, 3, 779.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWqurjP&md5=28630d659f9d0018ca6b6954073062a0CAS | 17982447PubMed |

[18]  J. Lee, E. K. Culyba, E. T. Powers, J. W. Kelly, Nat. Chem. Biol. 2011, 7, 602.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFKrurs%3D&md5=16ce53938134aa34702cb0a7f891a355CAS | 21804535PubMed |

[19]  B. R. Martin, B. N. G. Giepmans, S. R. Adams, R. Y. Tsien, Nat. Biotechnol. 2005, 23, 1308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhu7jL&md5=4be423786cd9d99d8ea90406defaf189CAS | 16155565PubMed |

[20]  K. Stroffekova, C. Proenza, K. Beam, Pflugers Arch. 2001, 442, 859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslOktL4%3D&md5=3ded0c074ff99f90c651f08ce62db546CAS | 11680618PubMed |

[21]  S. A. Slavoff, I. Chen, Y. A. Choi, A. A. Y. Ting, J. Am. Chem. Soc. 2008, 130, 1160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1ensQ%3D%3D&md5=e3108a53567315b721ed1aedcd016cd5CAS | 18171066PubMed |

[22]  I. Chen, M. Howarth, W. Y. Lin, A. Y. Ting, Nat. Methods 2005, 2, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVGhsr4%3D&md5=5fe98fcd62306ce59b532b4612d33544CAS | 15782206PubMed |

[23]  C. Uttamapinant, K. A. White, H. Baruah, S. Thompson, M. Fernandez-Suarez, S. Puthenveetil, A. Y. Ting, Proc. Natl. Acad. Sci. USA 2010, 107, 10914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVKqu7o%3D&md5=2860124752b055ab332fe3f0e2745d17CAS | 20534555PubMed |

[24]  S. Puthenveetil, D. S. Liu, K. A. White, S. Thompson, A. Y. Ting, J. Am. Chem. Soc. 2009, 131, 16430.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt7jI&md5=66b823de9dd0feb408ea9ad3e8a454f7CAS | 19863063PubMed |

[25]  M. Fernández-Suárez, T. S. Chen, A. Y. Ting, J. Am. Chem. Soc. 2008, 130, 9251.
         | Crossref | GoogleScholarGoogle Scholar | 18582056PubMed |

[26]  S. A. Slavoff, D. S. Liu, J. D. Cohen, A. Y. Ting, J. Am. Chem. Soc. 2011, 133, 19769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ju77I&md5=d361b6f45702d775aaf112be64a5fcc8CAS | 22098454PubMed |

[27]  E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ltrvK&md5=715722582599b86347d470004ca4fcd2CAS |

[28]  C. C. Liu, P. G. Schultz, Ann. Rev. Biochem. 2010, 79, 413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslShtrg%3D&md5=9af05c2ab5de81a6db855004f028a5b1CAS | 20307192PubMed |

[29]  C. H. Kim, J. Y. Axup, P. G. Schultz, Curr. Opin. Chem. Biol. 2013, 17, 412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVGgsrs%3D&md5=5375844c01265028f0e67e07d9e92760CAS | 23664497PubMed |

[30]  M. P. Brown, C. Royer, Curr. Opin. Biotechnol. 1997, 8, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFCnurc%3D&md5=df1afd0ead7ac5aa7b2f70a63c3d847dCAS | 9013650PubMed |

[31]  D. P. Millar, Curr. Opin. Struct. Biol. 1996, 6, 637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslGjt7w%3D&md5=2703c43fd57a1f0edcc8d86d59796cb9CAS | 8913686PubMed |

[32]  A. B. Pardee, V. G. Shore, L. S. Prestidge, Biochim. Biophys. Acta 1956, 21, 406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XptVWjsA%3D%3D&md5=a0a5a9dd1b486bcf87eae8f50148943fCAS | 13363942PubMed |

[33]  S. M. Twine, A. G. Szabo, Biophotonics A 2003, 360, 104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVKqs7w%3D&md5=89aa768a195bf4d38d5015f2d835d5d2CAS |

[34]  N. Budisa, P. P. Pal, Biol. Chem. 2004, 385, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslKku74%3D&md5=c3c20c2c71b71eba79fbb62241b70ae2CAS | 15551863PubMed |

[35]  S. Lepthien, B. Wiltschi, B. Bolic, N. Budisa, Appl. Microbiol. Biotechnol. 2006, 73, 740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Gnu7bL&md5=daf4acf2ec92eb38cae6c547a3695e97CAS | 17269153PubMed |

[36]  S. Lepthien, M. G. Hoesl, L. Merkel, N. Budisa, Proc. Natl. Acad. Sci. USA 2008, 105, 16095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSju73E&md5=4118c99873f30d28ca9996185abae8bdCAS | 18854410PubMed |

[37]  L. Merkel, M. G. Hoesl, M. Albrecht, A. Schmidt, N. Budisa, ChemBioChem 2010, 11, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFGhu7w%3D&md5=7ba93fa798afd564c4c9e083f11e89a5CAS | 20058252PubMed |

[38]  C. W. V. Hogue, I. Rasquinha, A. G. Szabo, J. P. Macmanus, FEBS Lett. 1992, 310, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt12nsbc%3D&md5=338b6aae7d7f38b0db130502b5f8c3e6CAS |

[39]  J. B. A. Ross, D. F. Senear, E. Waxman, B. B. Kombo, E. Rusinova, Y. T. Huang, W. R. Laws, C. A. Hasselbacher, Proc. Natl. Acad. Sci. USA 1992, 89, 12023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXht1Shs7s%3D&md5=04ebdbeee67755a2059361e53c803f14CAS |

[40]  Q. Li, H. N. Du, H. Y. Hu, Biopolymers 2003, 72, 116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1eisbc%3D&md5=d054758f0064cbc2faee727daa1b7399CAS | 12583014PubMed |

[41]  S. M. Twine, L. Murphy, R. S. Phillips, P. Callis, M. T. Cash, A. G. Szabo, J. Phys. Chem. B 2003, 107, 637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCmtrY%3D&md5=4a3facf81afd786fb495292cf9a87c39CAS |

[42]  Y. Doi, T. Ohtsuki, Y. Shimizu, T. Ueda, M. Sisido, J. Am. Chem. Soc. 2007, 129, 14458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wlt7jL&md5=5724c99d4b89911afe5949925a97cad1CAS | 17958427PubMed |

[43]  T. Hohsaka, K. Sato, M. Sisido, K. Takai, S. Yokoyama, FEBS Lett. 1993, 335, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt12ktb0%3D&md5=a9c621a249e4fb8b2db0596365d559c1CAS | 8243663PubMed |

[44]  H. Nakata, T. Ohtsuki, R. Abe, T. Hohsaka, M. Sisido, Anal. Biochem. 2006, 348, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1ak&md5=e399df92b366c9432c7e9d2a6c75a5a0CAS | 16307719PubMed |

[45]  T. Ohtsuki, H. Yamamoto, Y. Doi, M. Sisido, J. Biochem. 2010, 148, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFKhtLs%3D&md5=4384240ba364660a9af66d30cd54ae75CAS | 20519322PubMed |

[46]  T. Hohsaka, D. Kajihara, Y. Ashizuka, H. Murakami, M. Sisido, J. Am. Chem. Soc. 1999, 121, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVCrs7c%3D&md5=e5687a25e3de1ef176269b08174189a1CAS |

[47]  H. Murakami, T. Hohsaka, Y. Ashizuka, K. Hashimoto, M. Sisido, Biomacromolecules 2000, 1, 118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosl2ktg%3D%3D&md5=2a5d8e19d794fab69457188bf74aa5abCAS | 11709833PubMed |

[48]  D. Inoyama, Y. Chen, X. Huang, L. J. Beamer, A.-N. T. Kong, L. Hu, J. Biomol. Screen. 2012, 17, 435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlGktL4%3D&md5=415a5c7f9c867a220b970aa8c4a869b8CAS | 22156223PubMed |

[49]  I. Buskiewicz, A. Kubarenko, F. Peske, M. V. Rodnina, W. Wintermeyer, RNA 2005, 11, 947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvF2kt7w%3D&md5=891c27811dec467e3aaafcd6e43710adCAS | 15923378PubMed |

[50]  D. Kajihara, R. Abe, I. Iijima, C. Komiyama, M. Sisido, T. Hohsaka, Nat. Methods 2006, 3, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSms7nI&md5=635767c2f13b408c1095d1ca6462da55CAS | 17060916PubMed |

[51]  D. R. Liu, T. J. Magliery, M. Pasternak, P. G. Schultz, Proc. Natl. Acad. Sci. USA 1997, 94, 10092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Cqu74%3D&md5=7db0c0dfdccdf0d882a0c5b48ef55280CAS | 9294168PubMed |

[52]  L. Wang, A. Brock, B. Herberich, P. G. Schultz, Science 2001, 292, 498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVenu78%3D&md5=692e32d34a15dfac1c3d40e55ef9a40cCAS | 11313494PubMed |

[53]  K. Ozawa, K. V. Loscha, K. V. Kuppan, C. T. Loh, N. E. Dixon, G. Otting, Biochem. Biophys. Res. Commun. 2012, 418, 652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFaksrs%3D&md5=b143ad9f78bf629f81676e748ff2105aCAS | 22293204PubMed |

[54]  A. R. Goerke, J. R. Swartz, Biotechnol. Bioeng. 2009, 102, 400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmtbk%3D&md5=42695d0d2d65f05994a57e34f9f33c77CAS | 18781689PubMed |

[55]  A. L. Serrano, T. Troxler, M. J. Tucker, F. Gai, Chem. Phys. Lett. 2010, 487, 303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Snsro%3D&md5=08b34cf070d7101e729a1da249fb78fcCAS | 20419080PubMed |

[56]  K. C. Schultz, L. Supekova, Y. H. Ryu, J. M. Xie, R. Perera, P. G. Schultz, J. Am. Chem. Soc. 2006, 128, 13984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKitbnF&md5=dbaaed28aea5b33efe36c2e777191013CAS | 17061854PubMed |

[57]  J. Tang, H. Yin, J. Qiu, M. J. Tucker, W. F. DeGrado, F. Gai, J. Am. Chem. Soc. 2009, 131, 3816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFGmtrg%3D&md5=dd0acd81e416aae5c7352f543a87c69cCAS | 19256494PubMed |

[58]  S. J. Miyake-Stoner, A. M. Miller, J. T. Hammill, J. C. Peeler, K. R. Hess, R. A. Mehl, S. H. Brewer, Biochemistry 2009, 48, 5953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsleit7w%3D&md5=5e344b643767bc2ac80b7bf77b3b4f3fCAS | 19492814PubMed |

[59]  H. Taskent-Sezgin, J. Chung, V. Patsalo, S. J. Miyake-Stoner, A. M. Miller, S. H. Brewer, R. A. Mehl, D. F. Green, D. P. Raleigh, I. Carrico, Biochemistry 2009, 48, 9040.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOgurzP&md5=9484a49229534814ab77163590d2d1bbCAS | 19658436PubMed |

[60]  H. Taskent-Sezgin, P. Marek, R. Thomas, D. Goldberg, J. Chung, I. Carrico, D. P. Raleigh, Biochemistry 2010, 49, 6290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWitLo%3D&md5=012af3d66186667bfedfed5b73853449CAS | 20565125PubMed |

[61]  R. F. Wissner, S. Batjargal, C. M. Fadzen, E. J. Petersson, J. Am. Chem. Soc. 2013, 135, 6529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVylsrk%3D&md5=69e67fa28e31028bb931c0408828fe30CAS | 23594264PubMed |

[62]  H. Hamada, N. Kameshima, A. Szymanska, K. Wegner, L. Lankiewicz, H. Shinohara, M. Taki, M. Sisido, Bioorg. Med. Chem. 2005, 13, 3379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFCitLk%3D&md5=f775e6dd275b4635a7e4d564e685761dCAS | 15848750PubMed |

[63]  K. Doering, G. Meder, M. Hinnenberger, J. Woelcke, L. M. Mayr, U. Hassiepen, J. Biomol. Screen. 2009, 14, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGrtrc%3D&md5=a99debcef0ea4b966dffeeeefd89c907CAS | 19171917PubMed |

[64]  A. Szymańska, K. Wegner, L. Łankiewicz, Helv. Chim. Acta 2003, 86, 3326.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  L. C. Speight, A. K. Muthusamy, J. M. Goldberg, J. B. Warner, R. F. Wissner, T. Willi, B. F. Woodman, R. A. Mehl, E. J. Petersson, J. Am. Chem. Soc. 2013, 135, 18806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFegsLzP&md5=290875e2115e4bab5733615295b5dc8eCAS | 24303933PubMed |

[66]  T. Berthelot, J. C. Talbot, G. Lain, G. Deleris, L. Latxague, J. Pept. Sci. 2005, 11, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFSgsLs%3D&md5=f2b1d39778328c414e2fe3980a96a562CAS | 15635646PubMed |

[67]  A. Chatterjee, D. Seth, Photochem. Photobiol. 2013, 89, 280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFWgsLc%3D&md5=c03d29cad0fcbd838d22f572e3702388CAS | 23005913PubMed |

[68]  D. L. Daugherty, S. H. Gellman, J. Am. Chem. Soc. 1999, 121, 4325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGltrc%3D&md5=23c5353db803b2a73e7fabcbb1e44a1bCAS |

[69]  M. P. Brun, L. Bischoff, C. Garbay, Angew. Chem. Int. Ed. 2004, 43, 3432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVSns7k%3D&md5=25f1516936b7c06dad6b42d972ce4c1bCAS |

[70]  B. D. Wagner, Molecules 2009, 14, 210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Slsbk%3D&md5=760c5883f16f20b56858fe3209526cbdCAS | 19127249PubMed |

[71]  J. Y. Wang, J. M. Xie, P. G. Schultz, J. Am. Chem. Soc. 2006, 128, 8738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVSitro%3D&md5=da158a8a5ba97cd43143d34cdfb62866CAS |

[72]  V. K. Lacey, A. R. Parrish, S. L. Han, Z. X. Shen, S. P. Briggs, Y. G. Ma, L. Wang, Angew. Chem. Int. Ed. 2011, 50, 8692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFaitL4%3D&md5=f085eec7b58e280af4d565f0c70e98eaCAS |

[73]  G. W. Farr, W. A. Fenton, T. K. Chaudhuri, D. K. Clare, H. R. Saibil, A. L. Horwich, EMBO J. 2003, 22, 3220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFyhsbs%3D&md5=7da638c9f35d5acf5ee6cb8ff5f5aad5CAS | 12839985PubMed |

[74]  F. Guo, H. A. Tao, J. Buss, C. Coltharp, Z. Hensel, X. A. Jie, PLoS ONE 2010, 5,
         | Crossref | GoogleScholarGoogle Scholar |

[75]  G. Charbon, E. Brustad, K. A. Scott, J. Y. Wang, A. Lobner-Olesen, P. G. Schultz, C. Jacobs-Wagner, E. Chapman, ChemBioChem 2011, 12, 1818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOrtLw%3D&md5=6d2275b2f1d3f3125edf68fcb22f08c9CAS | 21681882PubMed |

[76]  I. Saraogi, D. W. Zhang, S. Chandrasekaran, S. O. Shan, J. Am. Chem. Soc. 2011, 133, 14936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaks7rK&md5=c69fd24580712a636ddffafd666174fdCAS | 21870811PubMed |

[77]  G. Weber, F. J. Farris, Biochemistry 1979, 18, 3075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkslWiurk%3D&md5=f6f60f9f1c7d822112e966babf07f77cCAS | 465454PubMed |

[78]  S. S. Lehrer, Y. Ishii, Biochemistry 1988, 27, 5899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXks12jsLg%3D&md5=25a1b3f33303987e1c40a1d8472ad3efCAS | 3191099PubMed |

[79]  T. Hiratsuka, J. Biol. Chem. 1999, 274, 29156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslWqt7c%3D&md5=be343882531f0ec59ddc42ce970dc5afCAS | 10506171PubMed |

[80]  F. G. Prendergast, M. Meyer, G. L. Carlson, S. Iida, J. D. Potter, J. Biol. Chem. 1983, 258, 7541.
         | 1:CAS:528:DyaL3sXks1Kqu78%3D&md5=d8fff308a19718ae3da609b1c1768bf7CAS | 6408077PubMed |

[81]  M. Nitz, A. R. Mezo, M. H. Ali, B. Imperiali, Chem. Commun. 1912, 2002,
         | Crossref | GoogleScholarGoogle Scholar |

[82]  M. E. Vázquez, M. Nitz, J. Stehn, M. B. Yaffe, B. Imperiali, J. Am. Chem. Soc. 2003, 125, 10150.
         | Crossref | GoogleScholarGoogle Scholar | 12926919PubMed |

[83]  L. Wang, A. Brock, P. G. Schultz, J. Am. Chem. Soc. 2002, 124, 1836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVWlu70%3D&md5=3f5bc80cb884fdf5b3c73ffc33b682deCAS | 11866580PubMed |

[84]  H. S. Lee, J. T. Guo, E. A. Lemke, R. D. Dimla, P. G. Schultz, J. Am. Chem. Soc. 2009, 131, 12921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCgt7%2FN&md5=24d0f50b184be64538b109a678685af5CAS | 19702307PubMed |

[85]  A. Chatterjee, J. T. Guo, H. S. Lee, P. G. Schultz, J. Am. Chem. Soc. 2013, 135, 12540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ChsL%2FM&md5=49af81af2c9887122c3c454d3bb897eeCAS | 23924161PubMed |

[86]  T. Kalstrup, R. Blunck, Proc. Natl. Acad. Sci. USA 2013, 110, 8272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2ksLvN&md5=b1b449e8bf10e4a15f24bb90f922916dCAS | 23630265PubMed |

[87]  R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, H. A. Lester, Biophys. J. 2009, 96, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptF2rtg%3D%3D&md5=95453cdb921897e91d6229b0c20ec360CAS | 19134478PubMed |

[88]  N. E. Schoppa, F. J. Sigworth, J. Gen. Physiol. 1998, 111, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFWltL0%3D&md5=689df91c0a90d71b72877406e74174c8CAS | 9450946PubMed |

[89]  M. L. Scalley, S. Nauli, S. T. Gladwin, D. Baker, Biochemistry 1999, 38, 15927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFalsL8%3D&md5=e59f461437d9eb581dca14bcccfc0c83CAS | 10625459PubMed |

[90]  G. Turcatti, S. Zoffmann, J. A. Lowe, S. E. Drozda, G. Chassaing, T. W. Schwartz, A. Chollet, J. Biol. Chem. 1997, 272, 21167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Ojt7o%3D&md5=8726c5bc54bda32d37a102240a06cb03CAS | 9261122PubMed |

[91]  M. Gustiananda, J. R. Liggins, P. L. Cummins, J. E. Gready, Biophys. J. 2004, 86, 2467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivF2nt7o%3D&md5=9c6a164554db568e90dd182ccd4a492fCAS | 15041684PubMed |

[92]  M. V. Naval, M. P. Gomez-Serranillos, M. E. Carretero, C. De Arce, J. Chromatogr. A 2006, 1121, 242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlWqsbs%3D&md5=23d6e1f857e450ca3c2b923dcfa7d051CAS | 16697391PubMed |

[93]  X. Kang, J. Xiao, X. Huang, Z. Gu, Clin. Chim. Acta 2006, 366, 352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVKhtLs%3D&md5=a17e2434076066dcfeff169f272c896dCAS | 16406032PubMed |

[94]  D. Summerer, S. Chen, N. Wu, A. Deiters, J. W. Chin, P. G. Schultz, Proc. Natl. Acad. Sci. USA 2006, 103, 9785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVajtrg%3D&md5=68be3b41e4963ae1857cd3025d851df1CAS | 16785423PubMed |

[95]  R. F. Chen, Arch. Biochem. Biophys. 1967, 120, 609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXksVSitLg%3D&md5=7d6985812ee8576155abd7c3e43d5892CAS |

[96]  B. S. Hartley, V. Massey, Biochim. Biophys. Acta 1956, 21, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28Xot1Gisw%3D%3D&md5=1fb514c37e683fdc7f8b045a1d46ed77CAS | 13363860PubMed |

[97]  B. Shen, Z. Xiang, B. Miller, G. Louie, W. Y. Wang, J. P. Noel, F. H. Gage, L. Wang, Stem Cells 2011, 29, 1231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGmt73M&md5=d2973506f2d5a22d6eee2c0bde2d5318CAS | 21681861PubMed |

[98]  A. R. Parrish, X. Y. She, Z. Xiang, I. Coin, Z. X. Shen, S. P. Briggs, A. Dillin, L. Wang, ACS Chem. Biol. 2012, 7, 1292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWnsL4%3D&md5=debd0f35a72eb33873c94d029f4ab6d1CAS | 22554080PubMed |

[99]  H. A. Godwin, J. M. Berg, J. Am. Chem. Soc. 1996, 118, 6514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1Grtrs%3D&md5=edb2b15a584b9785cb901e01ab68c486CAS |

[100]  G. K. Walkup, B. Imperiali, J. Am. Chem. Soc. 1997, 119, 3443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFWgsr0%3D&md5=c4a22d6774274bd64b9c366ab619301fCAS |

[101]  M. D. Shults, D. A. Pearce, B. Imperiali, J. Am. Chem. Soc. 2003, 125, 10591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOmurk%3D&md5=068d12638e992d4a3e30fbcf3dc20c7dCAS | 12940742PubMed |

[102]  C. I. Stains, N. C. Tedford, T. C. Walkup, E. Lukovic, B. N. Goguen, L. G. Griffith, D. A. Lauffenburger, B. Imperiali, Chem. Biol. 2012, 19, 210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFWntbY%3D&md5=232980a0a8e8c5d6e638a768ecd569c7CAS | 22365604PubMed |

[103]  H. S. Lee, G. Spraggon, P. G. Schultz, F. Wang, J. Am. Chem. Soc. 2009, 131, 2481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSltrs%3D&md5=e183dad0c7eedde206bd9bb0a110fb90CAS | 19193005PubMed |

[104]  L. R. Naik, N. N. Math, Ind. J. Pure Appl. Phys. 2005, 43, 743.
         | 1:CAS:528:DC%2BD2MXhtF2ks7fL&md5=3014e13b3d8115ab749d2e74b559e3a5CAS |

[105]  X. Liu, J. Li, C. Hu, Q. Zhou, W. Zhang, M. Hu, J. Zhou, J. Wang, Angew. Chem. Int. Ed. 2013, 52, 4805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVersro%3D&md5=df88ca3de96559ff8df58a6cf5d2b016CAS |

[106]  J. H. Mills, H. S. Lee, C. C. Liu, J. Y. Wang, P. G. Schultz, ChemBioChem 2009, 10, 2162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKntLjI&md5=4294a1867c40b89d1ce9cdd4651ed47fCAS | 19672911PubMed |

[107]  J. Xie, W. Liu, P. G. Schultz, Angew. Chem. Int. Ed. 2007, 46, 9239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFWhtg%3D%3D&md5=e0a7b02a1b9335177b266289a8902eeaCAS |

[108]  M. Szpakowska, I. Czaplicka, ARS Sep. Acta 2003, 2, 64.

[109]  H. Murakami, T. Hohsaka, Y. Ashizuka, M. Sisido, J. Am. Chem. Soc. 1998, 120, 7520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFWjsbo%3D&md5=d0b10fc07916aab327ad986db2ece5d9CAS |

[110]  M. Taki, T. Hohsaka, H. Murakami, K. Taira, M. Sisido, J. Am. Chem. Soc. 2002, 124, 14586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFGgtr4%3D&md5=933de4b59c1362856b103911772f8f39CAS | 12465968PubMed |

[111]  M. L. Tsao, D. Summerer, Y. H. Ryu, P. G. Schultz, J. Am. Chem. Soc. 2006, 128, 4572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1KisLo%3D&md5=fbe9f953ea5581cfd9965e28e7133452CAS | 16594684PubMed |

[112]  Y. S. Moroz, W. Binder, P. Nygren, G. A. Caputo, I. V. Korendovych, Chem. Commun. 2013, 490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVChs7nM&md5=704f78981c75c75b01de849c0c948cd7CAS |

[113]  W. M. Nau, X. Y. Zhang, J. Am. Chem. Soc. 1999, 121, 8022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt12rs7w%3D&md5=c6cbef259203bdcb056ec09c588750b7CAS |

[114]  R. R. Hudgins, F. Huang, G. Gramlich, W. M. Nau, J. Am. Chem. Soc. 2002, 124, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWqsw%3D%3D&md5=e11470241d81f57b9f049188a932ee9dCAS | 1:CAS:528:DC%2BD38XhsVWqsw%3D%3D&md5=e11470241d81f57b9f049188a932ee9dCAS | 11804484PubMed |

[115]  A. Hennig, D. Roth, T. Enderle, W. M. Nau, ChemBioChem 2006, 7, 733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkslyhuro%3D&md5=fb88c99954ad1a0f6495674cff32b5b2CAS | 1:CAS:528:DC%2BD28Xkslyhuro%3D&md5=fb88c99954ad1a0f6495674cff32b5b2CAS | 16528785PubMed |

[116]  C. Boudier, A. S. Klymchenko, Y. Mely, A. Follenius-Wund, Photochem. Photobiol. Sci. 2009, 8, 814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1yit7Y%3D&md5=11736470c50ec49c498848b798cd5900CAS | 1:CAS:528:DC%2BD1MXms1yit7Y%3D&md5=11736470c50ec49c498848b798cd5900CAS | 19492109PubMed |

[117]  A. V. Strizhak, V. Y. Postupalenko, V. V. Shvadchak, N. Morellet, E. Guittet, V. G. Pivovarenko, A. S. Klymchenko, Y. Mely, Bioconjug. Chem. 2012, 23, 2434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ons7fL&md5=b1b39c4f38deaba8c73b8408c3910379CAS | 23153224PubMed |

[118]  G. K. Bains, S. H. Kim, E. J. Sorin, V. Narayanaswami, Biochemistry 2012, 51, 6207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFehs7w%3D&md5=f0bc7dff53c9649cf1c7b604b7085ef1CAS | 1:CAS:528:DC%2BC38XpvFehs7w%3D&md5=f0bc7dff53c9649cf1c7b604b7085ef1CAS | 22779734PubMed |

[119]  I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules 2nd edn 1971 (Academic Press: New York).

[120]  K. J. Oh, K. J. Cash, K. W. Plaxco, J. Am. Chem. Soc. 2006, 128, 14018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCmurrN&md5=dc0166d8126c58264f0ee22a0b31ae55CAS | 1:CAS:528:DC%2BD28XhtVCmurrN&md5=dc0166d8126c58264f0ee22a0b31ae55CAS | 17061871PubMed |

[121]  K. J. Oh, K. J. Cash, V. Hugenberg, K.W. Plaxco, Bioconjug. Chem. 2007, 18, 607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Sis7o%3D&md5=04a88d7cca397e4c7c320f396ea9584dCAS | 1:CAS:528:DC%2BD2sXks1Sis7o%3D&md5=04a88d7cca397e4c7c320f396ea9584dCAS | 17461545PubMed |

[122]  Q. Wang, S. M. Cahill, M. Blumenstein, D. S. Lawrence, J. Am. Chem. Soc. 1808, 2006,
         | Crossref | GoogleScholarGoogle Scholar |

[123]  Y. Choi, J. Lee, K. Kim, H. Kim, P. Sommer, R. Song, Chem. Commun. 2010, 9146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVynurjP&md5=da0de3f6066126823edd9b637bfef722CAS | 1:CAS:528:DC%2BC3cXhsVynurjP&md5=da0de3f6066126823edd9b637bfef722CAS |

[124]  E. D. Matayoshi, G. T. Wang, G. A. Krafft, J. Erickson, Science 1990, 247, 954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFakurc%3D&md5=61af7f287176db9be415ce081ba3c921CAS | 1:CAS:528:DyaK3cXitFakurc%3D&md5=61af7f287176db9be415ce081ba3c921CAS | 2106161PubMed |

[125]  K. Stachowiak, M. Tokmina, A. Karpinska, R. Sosnowska, W. Wiczk, Acta Biochim. Pol. 2004, 51, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFWjtbw%3D&md5=2a81df2e294d65a9ec41f73cbc6eb288CAS | 1:CAS:528:DC%2BD2cXltFWjtbw%3D&md5=2a81df2e294d65a9ec41f73cbc6eb288CAS | 15094828PubMed |

[126]  G. T. Wang, C. C. Chung, T. F. Holzman, G. A. Krafft, Anal. Biochem. 1993, 210, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Kiurc%3D&md5=afee535692db35576bc0f9ed92c2d6e7CAS | 1:CAS:528:DyaK3sXks1Kiurc%3D&md5=afee535692db35576bc0f9ed92c2d6e7CAS | 8512070PubMed |

[127]  P. Pattanaik, B. Jain, G. Ravindra, H. N. Gopi, P. P. Pal, H. Balaram, P. Balaram, Biochem. Biophys. Res. Commun. 2003, 309, 974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1ygurg%3D&md5=2cd2d447f8e39710d76fd3b8e8c06754CAS | 1:CAS:528:DC%2BD3sXnt1ygurg%3D&md5=2cd2d447f8e39710d76fd3b8e8c06754CAS | 13679069PubMed |

[128]  L. Feng, K. Manabe, J. C. Shope, S. Widmer, D. B. DeWald, G. D. Prestwich, Chem. Biol. 2002, 9, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1WrtLw%3D&md5=9cabdaf446840d095e7150a3f13fd254CAS | 1:CAS:528:DC%2BD38Xls1WrtLw%3D&md5=9cabdaf446840d095e7150a3f13fd254CAS | 12144923PubMed |

[129]  R. D. Anderson, J. Zhou, S. M. Hecht, J. Am. Chem. Soc. 2002, 124, 9674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFygtb8%3D&md5=0805e1b58fef7957f8ccac15c285c6d2CAS | 1:CAS:528:DC%2BD38XlsFygtb8%3D&md5=0805e1b58fef7957f8ccac15c285c6d2CAS | 12175203PubMed |

[130]  S. Batjargal, Y. J. Wang, J. M. Goldberg, R. F. Wissner, E. J. Petersson, J. Am. Chem. Soc. 2012, 134, 9172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOgurY%3D&md5=9640211eaf6b0d9b1e8784ee56a50f03CAS | 1:CAS:528:DC%2BC38XkvFOgurY%3D&md5=9640211eaf6b0d9b1e8784ee56a50f03CAS | 22468862PubMed |

[131]  J. M. Goldberg, S. Batjargal, E. J. Petersson, J. Am. Chem. Soc. 2010, 132, 14718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ehtL%2FI&md5=f55bfd6425993bcd8a42756af7daa72aCAS | 1:CAS:528:DC%2BC3cXht1ehtL%2FI&md5=f55bfd6425993bcd8a42756af7daa72aCAS | 20886849PubMed |

[132]  J. M. Goldberg, R. F. Wissner, A. M. Klein, E. J. Petersson, Chem. Commun. 2012, 1550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtF2isw%3D%3D&md5=542032fa2675bec5b2e5b0abe9755477CAS | 1:CAS:528:DC%2BC38XmtF2isw%3D%3D&md5=542032fa2675bec5b2e5b0abe9755477CAS |

[133]  J. M. Goldberg, L. C. Speight, M. W. Fegley, E. J. Petersson, J. Am. Chem. Soc. 2012, 134, 6088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOms7k%3D&md5=eb2acfc95a855a8fa19f89dd8ad53f2dCAS | 1:CAS:528:DC%2BC38XkvFOms7k%3D&md5=eb2acfc95a855a8fa19f89dd8ad53f2dCAS | 22471784PubMed |

[134]  J. M. Goldberg, S. Batjargal, B. Chen, E. J. Petersson, J. Am. Chem. Soc. 2013, 135, 18651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVCmur7E&md5=326fce046da8dcc6f51eb38fa6425a0dCAS | 1:CAS:528:DC%2BC3sXhvVCmur7E&md5=326fce046da8dcc6f51eb38fa6425a0dCAS | 24266520PubMed |

[135]  R. F. Wissner, A. M. Wagner, J. B. Warner, Synlett 2013, 2454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVSqs7zM&md5=0360433c6d0add167d598eb33149b1fdCAS | 1:CAS:528:DC%2BC3sXitVSqs7zM&md5=0360433c6d0add167d598eb33149b1fdCAS |

[136]  H. Neumann, K. H. Wang, L. Davis, M. Garcia-Alai, J. W. Chin, Nature 2010, 464, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFelsrc%3D&md5=6181b5d8340fd037fc1d3b28fba45593CAS | 1:CAS:528:DC%2BC3cXitFelsrc%3D&md5=6181b5d8340fd037fc1d3b28fba45593CAS | 20154731PubMed |

[137]  W. Wan, Y. Huang, Z. Y. Wang, W. K. Russell, P. J. Pai, D. H. Russell, W. R. Liu, Angew. Chem. Int. Ed. 2010, 49, 3211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKrs7g%3D&md5=486aac0609f241c6fe71320d46bfa305CAS | 1:CAS:528:DC%2BC3cXkslKrs7g%3D&md5=486aac0609f241c6fe71320d46bfa305CAS |

[138]  K. V. Loscha, A. J. Herlt, R. H. Qi, T. Huber, K. Ozawa, G. Otting, Angew. Chem. Int. Ed. 2012, 51, 2243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCku7s%3D&md5=910eb1e555ffc5cc8c3aa38264b4cefaCAS | 1:CAS:528:DC%2BC38XhslCku7s%3D&md5=910eb1e555ffc5cc8c3aa38264b4cefaCAS |

[139]  F. Yang, L. G. Moss, G. N. Phillips, Nat. Biotechnol. 1996, 14, 1246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFagsr8%3D&md5=fd2a5a43694d1e7601eb03437a7735cfCAS | 1:CAS:528:DyaK28XmtFagsr8%3D&md5=fd2a5a43694d1e7601eb03437a7735cfCAS | 9631087PubMed |

[140]  V. G. Pivovarenko, O. M. Zamotaiev, V. V. Shvadchak, V. Y. Postupalenko, A. S. Klymchenko, Y. Mely, J. Phys. Chem. A 2012, 116, 3103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt12ls7Y%3D&md5=45fd4d5ca0b94c7f647ee5a83af4c387CAS | 22394312PubMed |