Synthesis of Silicon and Germanium Nanowire Assemblies by Template-Assisted Electrodeposition from an Ionic Liquid
Anne Willert A , Sherif Zein El Abedin A and Frank Endres A B CA Clausthal University of Technology, Institute of Electrochemistry, D-38678 Clausthal-Zellerfeld, Germany.
B Energieforschungszentrum Goslar (EFZN), D-38640 Goslar, Germany.
C Corresponding author. Email: frank.endres@tu-clausthal.de
Australian Journal of Chemistry 67(6) 875-880 https://doi.org/10.1071/CH13549
Submitted: 11 October 2013 Accepted: 24 January 2014 Published: 14 February 2014
Abstract
We report on the template-assisted synthesis of silicon and germanium nanowires from the air- and water-stable ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4] TFSA). The synthesis was done by electrochemical deposition in the pores of a commercial track-etched polycarbonate membrane. After chemical dissolution of the polycarbonate membrane in dichloromethane, nanowire assemblies with a regular arrangement were obtained. Different lengths of nanowires can be obtained by varying the applied potential and the time of deposition. The nanowire assemblies were characterised by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDX). Our results show that the template-assisted electrochemical deposition approach in ionic liquids has the potential to easily synthesise germanium and silicon nanowire assemblies.
References
[1] B. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivF2htQ%3D%3D&md5=205b9348feb7edef77d07002a99a50feCAS |
[2] U. Kasavajjula, C. Wang, A. J. Appleby, J. Power Sources 2007, 163, 1003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCmtLfP&md5=343843b448bf6d98e4a775e35f42407eCAS |
[3] X. H. Liu, L. Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J. W. Wang, J.-H. Cho, S. A. Dayeh, S. T. Picraux, J. P. Sullivan, S. X. Mao, Z. Z. Ye, J. Y. Huang, Nano Lett. 2011, 11, 2251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFClsbg%3D&md5=107c16881d4c698a4a4de5c812498c0aCAS | 21563798PubMed |
[4] M. N. Obrovac, L. Christensen, Electrochem. Solid-State Lett. 2004, 7, A93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Wls74%3D&md5=249ce5cf96429b81ce7229e07a838030CAS |
[5] J. Li, A. K. Dozier, Y. Li, F. Yang, Y.-T. Chang, J. Electrochem. Soc. 2011, 158, A689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFCgt7o%3D&md5=0bbefceffef8ec7ee17cc30fba257a0eCAS |
[6] X. H. Liu, F. Fan, H. Yang, S. Zhang, J. Y. Huang, T. Zhu, ACS Nano 2013, 7, 1495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVCq&md5=e04261b37d29322da928fbb7bd7ac4b0CAS | 23272994PubMed |
[7] V. Chakrapani, F. Rusli, M. A. Filler, P. A. Kohl, J. Phys. Chem. C 2011, 115, 22048.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaqsLbI&md5=c94bedd0010d7a7e30d361bba3d87492CAS |
[8] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGh&md5=6e4f03a3065bd42cd1c1613693fedaa7CAS | 18654447PubMed |
[9] N.-S. Choi, Y. Yao, Y. Cui, J. Cho, J. Mater. Chem. 2011, 21, 9825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFSntrc%3D&md5=4a7921bcffcebf3ed31970ef2fcb6846CAS |
[10] J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, T. Harris, H. Li, J. Y. Huang, S. X. Mao, T. Zhu, Nano Lett. 2013, 13, 709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslOhtA%3D%3D&md5=f8311840d32d5adbd62967a8ee53faa9CAS | 23323743PubMed |
[11] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, J. Y. Huang, ACS Nano 2012, 6, 1522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVWksA%3D%3D&md5=af2b228246be4f16c5b175ce450a55e8CAS | 22217200PubMed |
[12] C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2008, 8, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCrsLbN&md5=048adc1c0a1c7424710204095858ec4fCAS | 18095738PubMed |
[13] R. Al-Salman, J. Mallet, M. Molinari, P. Fricoteaux, F. Martineau, M. Troyon, S. Zein El Abedin, F. Endres, Phys. Chem. Chem. Phys. 2008, 10, 6233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrsbjI&md5=7dab4ba17c3e2042ebb82b0cb8589a19CAS | 18936846PubMed |
[14] A. S. Ismail, S. Zein El Abedin, O. Höfft, F. Endres, Electrochem. Commun. 2010, 12, 909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslyksr4%3D&md5=78b66d06b84955e2d2a7c67fbc27a817CAS |
[15] F. Bebensee, N. Borissenko, M. Frerichs, O. Hoefft, W. Maus-Friedrichs, S. Zein El Abedin, F. Endres, Z. Phys. Chem. 2008, 222, 671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1emu78%3D&md5=6dffbcaa6df1ece130f7817be0521d3bCAS |
[16] A. Willert, A. Prowald, S. Zein El Abedin, O. Höfft, F. Endres, Aust. J. Chem. 2012, 65, 1507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtrjN&md5=cf5053de460b3eaf9be2ae658f0f0497CAS |
[17] L. H. S. Gasparotto, N. Borisenko, N. Bocchi, S. Zein El Abedin, F. Endres, Phys. Chem. Chem. Phys. 2009, 11, 11140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtLfL&md5=d5fe831a0c8575af020cd50ec782df33CAS |
[18] P. C. Howlett, N. Brack, A. F. Hollenkamp, M. Forsyth, D. R. MacFarlane, J. Electrochem. Soc. 2006, 153, A595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlOjtLk%3D&md5=b5c8b2868a477b1c56db809929b0ef6bCAS |