Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Simple Route to Prepare Zeolite Y Nanosheets with Hierarchical Perfoliate Pores

Daming Cui A B , Bin Zhou A B , Jia Yin A and Meiqing Lou A C
+ Author Affiliations
- Author Affiliations

A Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang, Shanghai 200072, China.

B These authors contributed equally to this study.

C Corresponding author. Email: 8228loumq@tongji.edu.cn

Australian Journal of Chemistry 67(6) 929-932 https://doi.org/10.1071/CH13543
Submitted: 8 October 2013  Accepted: 10 February 2014   Published: 7 March 2014

Abstract

Using the high siliceous zeolite Y crystals (ZY-C) as precursor, zeolite Y nanosheets (ZY-N) with hierarchical perfoliate pores were successfully synthesised via a simple ‘top-down’ approach. The ultra-thin faujasite nanosheets with intact zeolite Y framework and hierarchical micro-meso-macropores were first observed in ZY-N during characterisation. Contrary to the layer assembly process in growing zeolite Y crystals, the breakage and swelling of the energy-poor T–O–T (where T is the tetrahedral atom, Si) bonds within the double six-membered rings (D6R) between the neighbouring faujasite sheets demonstrated the possible principle for the synthesis of ZY-N.


References

[1]  W. Fan, M. A. Snyder, S. Kumar, P. S. Lee, W. C. Yoo, A. V. McCormick, R. L. Penn, A. Stein, M. Tsapatsis, Nat. Mater. 2008, 7, 984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWmu7nF&md5=baf1f792b28d7f07ccae7f2ed3d083e4CAS | 18953343PubMed |

[2]  L. Tosheva, V. P. Valtchev, Chem. Mater. 2005, 17, 2494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVCqsbk%3D&md5=aeb5448800c5ec2d32769ab38502bcadCAS |

[3]  K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, J. Am. Chem. Soc. 2010, 132, 4169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSitrg%3D&md5=442a93931f374073f5d98e63c20a1817CAS | 20136135PubMed |

[4]  W. C. Yoo, S. Kumar, R. L. Penn, M. Tsapatsis, A. Stein, J. Am. Chem. Soc. 2009, 131, 12377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ektbk%3D&md5=cc93a0af44c890658aa2dd3510f40c0aCAS | 19663496PubMed |

[5]  C. Madsen, C. H. Jacobsen, Chem. Commun. 1999, 8, 673.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. Wang, B. A. Holmberg, Y. Yan, J. Am. Chem. Soc. 2003, 125, 9928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Shsrw%3D&md5=b2dbd9ff924ea4c49b0105995f801e8cCAS | 12914448PubMed |

[7]  L. Itani, Y. Liu, W. Zhang, K. N. Bozhilov, L. Delmotte, V. Valtchev, J. Am. Chem. Soc. 2009, 131, 10127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2mtr4%3D&md5=943fca4824d573f247a445567207a412CAS | 19572709PubMed |

[8]  S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D. F. Shantz, M. Tsapatsis, Angew. Chem. Int. Ed. 2008, 47, 552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVCgug%3D%3D&md5=24505558aa99304163ec7eefb32916fbCAS |

[9]  S. Maheshwari, E. Jordan, S. Kumar, F. S. Bates, R. L. Penn, D. F. Shantz, M. Tsapatsis, J. Am. Chem. Soc. 2008, 130, 1507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivF2gsA%3D%3D&md5=9ac7adaa19f807dee5e1918feec9eabcCAS | 18179218PubMed |

[10]  A. Corma, V. Fornes, J. M. Triguero, S. B. Pergher, J. Catal. 1999, 186, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1eitrs%3D&md5=83428403821333524927b4c37c6d1484CAS |

[11]  A. Corma, V. Fornes, S. B. Pergher, T. M. Maesen, J. G. Buglass, Nature 1998, 396, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVaku7s%3D&md5=214b5ab181afcc32f7a06f490c678e70CAS |

[12]  M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 2009, 461, 246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSnt73I&md5=9456ce2fe0e31157a5d7d9cd4e108279CAS | 19741706PubMed |

[13]  M. A. Sanchez-Castillo, R. J. Madon, J. A. Dumesic, J. Phys. Chem. B. 2005, 109, 2164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFWgs7o%3D&md5=2cc8cc719699584fa6a3993110ec1302CAS | 16851208PubMed |

[14]  I. L. Buurmans, J. Ruiz-Martínez, S. L. van Leeuwen, D. van der Beek, J. A. Bergwerff, W. V. Knowles, E. T. Vogt, B. M. Weckhuysen, Chem. – Eur. J. 2012, 18, 1094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lu7zO&md5=bf3801a1fe4ab580de14cc3c0e98e2c5CAS | 22161809PubMed |

[15]  M. Matsukata, K. Kizu, M. Ogura, E. Kikuchi, Cryst. Growth Des. 2001, 1, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntl2mu7g%3D&md5=7b9a51ca0baf5bab63524df0a75a0409CAS |

[16]  M. W. Anderson, J. R. Agger, J. T. Thornton, N. Forsyth, Angew. Chem. Int. Ed. 1996, 35, 1210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOmtb4%3D&md5=773cbe69eab2702453fdc5eea93fdd2fCAS |

[17]  W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXlt1yjuw%3D%3D&md5=0c3d61247b38cba6a84e1bc81ef53c64CAS |

[18]  L. Rees, Nature 1983, 303, 204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktFWhtLc%3D&md5=c80c024564639e4bf41e4005961fb754CAS |

[19]  J. V. Smith, C. S. Blackwell, Nature 1983, 303, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit1Kkt7c%3D&md5=c2ec7cb4d8907bc52f11b9f5a16ee1f2CAS |

[20]  S. Ramdas, J. Klinowski, Nature 1984, 308, 521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitVWgs74%3D&md5=3304c823233fe69f5c4bbb9f99adb384CAS |

[21]  J. C. Groen, T. Bach, U. Ziese, A. P. Donk, K. P. de Jong, J. A. Moulijn, J. Perez-Ramirez, J. Am. Chem. Soc. 2005, 127, 10792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVClsbs%3D&md5=168a20452919ef5cf2b7fb1e69265ba2CAS | 16076160PubMed |

[22]  J. C. Groen, L. A. Peffer, J. A. Moulijn, J. Perez-Ramirez, Chem. – Eur. J. 2005, 11, 4983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVKhtb4%3D&md5=c3280c5a4fd38cfd42c3b149f8eeda19CAS | 15968702PubMed |

[23]  S. Yamamoto, S. Sugiyama, O. Matsuoka, K. Kohmura, T. Honda, Y. Banno, H. Nozoye, J. Phys. Chem. 1996, 100, 18474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFentL4%3D&md5=98222c2d440700be3d0d80f6ee22f4a1CAS |

[24]  M. Matsukata, K. Kizu, M. Ogura, E. Kikuchi, Cryst. Growth Des. 2001, 1, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntl2mu7g%3D&md5=7b9a51ca0baf5bab63524df0a75a0409CAS |