Role of Polarization in Halogen Bonds
Timothy Clark A B E , Jane S. Murray C D and Peter Politzer C DA Computer-Chemie-Centrum, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany.
B Centre for Molecular Design, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK.
C CleveTheoComp, 1951 W. 26th Street, Suite 409, Cleveland, OH 44113, USA.
D Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
E Corresponding author. Email: tim.clark@fau.de
Australian Journal of Chemistry 67(3) 451-456 https://doi.org/10.1071/CH13531
Submitted: 2 October 2013 Accepted: 31 October 2013 Published: 28 November 2013
Abstract
A classical point-charge self-consistent polarization model has been used to investigate the role of polarization in the CF3Cl:OH2 complex. The polarised electron densities of the monomers component are shown to be a good representation of the electron densities of complexes, especially CF3Cl. The point-charge model overestimates the polarization of the water molecule, which is likely because exchange repulsion is unaccounted for in the classical model calculations.
References
[1] S. Scheiner, Hydrogen bonding 1997 (Oxford University Press: Oxford).[2] D. Chandler, Nature 2005, 437, 640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsLzM&md5=2e5662a1d967d5b589a58e87aeee22a3CAS | 16193038PubMed |
[3] M. Kolář, T. Kubař, P. Hobza, J. Phys. Chem. B 2011, 115, 8038.
| Crossref | GoogleScholarGoogle Scholar | 21574645PubMed |
[4] T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFantL8%3D&md5=fb1df22f79071a4d63eec667e4a3fe01CAS | 16927107PubMed |
[5] P. Politzer, P. Lane, M. Concha, Y. Ma, J. S. Murray, J. Mol. Model. 2007, 13, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFantL0%3D&md5=110da2d391a05c76ca985b9646d954eeCAS | 17013631PubMed |
[6] P. Politzer, J. S. Murray, ChemPhysChem 2013, 14, 278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlKhtA%3D%3D&md5=e375dab257bacd4cc543152480d810fcCAS | 23303575PubMed |
[7] P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2010, 12, 7748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFaqtrg%3D&md5=f1c3c5a108eb2507c2f1759329cde8d5CAS | 20571692PubMed |
[8] J. S. Murray, K. E. Riley, P. Politzer, T. Clark, Aust. J. Chem. 2010, 63, 1598.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaqsbnN&md5=d8f0d7716b302c5474247109955bfc53CAS |
[9] P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2013, 15, 11178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1ygsrc%3D&md5=527395afa756140697a02ad4359debceCAS | 23450152PubMed |
[10] A. El Kerdawy, J. S. Murray, P. Politzer, P. Bleiziffer, A. Hesselmann, A. Görling, T. Clark, J. Chem. Theory Comput. 2013, 9, 2264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslahtro%3D&md5=85714db3699ed0b186cf029e59f331f6CAS |
[11] T. Clark, in Theories and Models for Chemical Bonding (Eds G. Frenking, S. Shaik) 2013, Vol. 2, (Wiley: Heidenheim). ISBN: 978-3-527-33318-9.
[12] T. Clark, WIREs Comput. Mol. Sci. 2013, 3, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1ens7w%3D&md5=0563dfccccbdcf4016eaa6708534a7f1CAS |
[13] J. Lennard-Jones, Trans. Faraday Soc. 1929, 25, 668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3cXjvFSmsQ%3D%3D&md5=2f5c3cb2645e04e620b8e889fbbf8676CAS |
[14] P. Hobza, K. Müller-Dethlefs, Non-covalent Interactions: Theory and Experiment 2010, p. 13, (Royal Society of Chemistry: Cambridge).
[15] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alt7fM&md5=3f65c21bef3dce7b5735b3e0914cca9fCAS |
[16] S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys. 1996, 105, 11024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVCmuw%3D%3D&md5=4a203e6bc2448cd26b521b04051b3efeCAS |
[17] J. R. Alvarez-Idaboy, A. Galano, Theor. Chem. Acc. 2010, 126, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFeqtr8%3D&md5=da43700d438844c82387fe249ae8be1eCAS |
[18] A. J. Stone, A. J. Misquitta, Theor. Chem. Phys. Lett. 2009, 473, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGjtbY%3D&md5=aa28abf8f3bc1430cf0128f2921da960CAS |
[19] B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlymt78%3D&md5=c60619913bd902a51b59df6ff8b7fbd4CAS |
[20] W. A. Sokalski, S. Rszak, J. Mol. Struct.- THEOCHEM 1991, 234, 387.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. Hennemann, J. S. Murray, P. Politzer, K. E. Riley, T. Clark, J. Mol. Model. 2012, 18, 2461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOhu7w%3D&md5=4847ca0aa6d5be3c9fd620f3284f98bfCAS | 22015592PubMed |
[22] J. Chen, T. Martínez, Chem. Phys. Lett. 2007, 438, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1ejurs%3D&md5=428b98aa076d1c62f786fb8ce4b5824bCAS |
[23] A. J. Misquitta, Charge-transfer from regularized Symmetry-Adapted Perturbation Theory, arXiv:1308.1231 [physics.chem-ph], 6 August 2013. Available at http://arxiv.org/abs/1308.1231 (accessed 4 November 2013).
[24] R. J. Azar, M. Head-Gordon, J. Chem. Phys. 2012, 136, 024103.
| Crossref | GoogleScholarGoogle Scholar | 22260560PubMed |
[25] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Giu7g%3D&md5=e7a9b091fc0d251369de043c0c1e8df5CAS |
[26] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Giu7k%3D&md5=9eadd42c2d3d03700953064d4cb471feCAS |
[27] M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett. 1994, 220, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtV2qsLc%3D&md5=09f076af281aaf5d7e78c3f40a0e8afbCAS |
[28] M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1988, 153, 503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhs1SmtLo%3D&md5=eb22d3c6d9aafb2f4c22daee52b194beCAS |
[29] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. Sæbø, J. Almlof, Chem. Phys. Lett. 1989, 154, 83.
| Crossref | GoogleScholarGoogle Scholar |
[31] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=d4e9cc0e43c2e0f1a0ea5fbf96cf32b6CAS |
[32] R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFClurw%3D&md5=3570c45c37e639ea93ca9fc43e81f8abCAS |
[33] D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlans7Y%3D&md5=897d02c14b817c4a95c4d48785829a8cCAS |
[34] P. Politzer, K. E. Riley, F. A. Bulat, J. S. Murray, Comp. Theor. Chem. 2012, 998, 2.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKmurnE&md5=659684ffc8a602a0817fba31ea3b5c70CAS |