Effect of Extended Conjugation on the Optoelectronic Properties of Benzo[1,2-d:4,5-d′]bisoxazole Polymers
Brian C. Tlach A , Aimée L. Tomlinson B , Kiley D. Morgan B , Christopher R. Collins B , Michael D. Zenner A and Malika Jeffries-EL A CA Department of Chemistry, Iowa State University, Ames IA 50010, USA.
B Department of Chemistry and Biochemistry, University of North Georgia, GA 30597, USA.
C Corresponding author. Email: malikaj@iastate.edu
Australian Journal of Chemistry 67(5) 711-721 https://doi.org/10.1071/CH13528
Submitted: 1 October 2013 Accepted: 4 December 2013 Published: 30 January 2014
Abstract
Four copolymers comprising benzo[1,2-d:4,5-d']bisoxazole (BBO) and benzo[1,2-b:4,5-b′]dithiophene (BDT) bearing phenylethynyl substituents on either the BBO, BDT moieties or both units were synthesised and the influence of two-dimensional conjugation on their optoelectronic properties investigated. Extending conjugation along the BBO resulted in a 0.5 eV decrease in the LUMO level, whereas the HOMO level was raised by 0.2 eV. Extending conjugation across the BDT moiety in also resulted in a 0.5 eV decrease in the LUMO level, however, the effect was negligible on the HOMO level. Thus, cross-conjugation can be used to independently tune the LUMO level within these systems.
References
[1] (a) A. Facchetti, Chem. Mater. 2011, 23, 733.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Srsb3K&md5=5920f43967a26377302f4484a19fcc67CAS |
(b) S. R. Forrest, M. E. Thompson, Chem. Rev. 2007, 107, 923.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D. D. C. Bradley, T. D. Anthopoulos, J. Mater. Chem. 2010, 20, 2562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Kitbk%3D&md5=2a297e6f611ad5349e5d3934e4c50190CAS |
(b) A. Facchetti, Mater. Today 2007, 10, 28.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. E. Katz, J. Huang, Annu. Rev. Mater. Res. 2009, 39, 71.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtVynsLo%3D&md5=f24a72b3bb6adb2da4f1f6095021fe40CAS |
(b) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xpt1SmsQ%3D%3D&md5=fad923b3dd5e17cc2aa9270c867b67d3CAS |
(b) M. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. Heeger, C. Brabec, Adv. Mater. 2006, 18, 789.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Adv. Mater. 2010, 22, 673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVShurs%3D&md5=1bbbefc0ba67745729f63c904b4e33c1CAS | 20217769PubMed |
[6] (a) D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisFKiu7s%3D&md5=ebaa640cda9e16d7ab1c9d423780aec2CAS |
(b) T. Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, J. Phys. Chem. B 2000, 104, 237.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) K. Osowska, O. S. Miljanic, Chem. Commun. 2010, 46, 4276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVent7Y%3D&md5=cc1fad9757ff4a297ad25f36bbd84111CAS |
(b) J. Lim, T. A. Albright, B. R. Martin, O. Š. Miljanić, J. Org. Chem. 2011, 76, 10207.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. E. Klare, G. S. Tulevski, K. Sugo, A. de Picciotto, K. A. White, C. Nuckolls, J. Am. Chem. Soc. 2003, 125, 6030.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. N. Wilson, M. Josowicz, Y. Wang, U. H. F. Bunz, Chem. Commun. 2003, 2962.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. J. Zucchero, P. L. McGrier, U. H. F. Bunz, Accounts Chem. Res. 2010, 43, 397.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. L. McGrier, K. M. Solntsev, S. Miao, L. M. Tolbert, O. R. Miranda, V. M. Rotello, U. H. F. Bunz, Chem. Eur. J. 2008, 14, 4503.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. A. Marsden, J. J. Miller, L. D. Shirtcliff, M. M. Haley, J. Am. Chem. Soc. 2005, 127, 2464.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. Ohta, S. Yamada, K. Kamada, A. D. Slepkov, F. A. Hegmann, R. R. Tykwinski, L. D. Shirtcliff, M. M. Haley, P. Salek, F. Gel’mukhanov, H. Aagren, J. Phys. Chem. A 2011, 115, 105.
| Crossref | GoogleScholarGoogle Scholar |
(i) E. L. Spitler, J. M. Monson, M. M. Haley, J. Org. Chem. 2008, 73, 2211.
| Crossref | GoogleScholarGoogle Scholar |
(j) E. L. Spitler, L. D. Shirtcliff, M. M. Haley, J. Org. Chem. 2007, 72, 86.
| Crossref | GoogleScholarGoogle Scholar |
(k) H. Kang, G. Evmenenko, P. Dutta, K. Clays, K. Song, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 6194.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) B. C. Tlach, A. L. Tomlinson, A. G. Ryno, D. D. Knoble, D. L. Drochner, K. J. Krager, M. Jeffries-EL, J. Org. Chem. 2013, 78, 6570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFant7k%3D&md5=f2808bfced440890f8cb9e78269b437dCAS | 23796165PubMed |
(b) S. Wang, S. Ren, Y. Xiong, M. Wang, X. Gao, H. Li, ACS Appl. Mater. Interfaces 2013, 5, 663.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. G. Dubinina, R. S. Price, K. A. Abboud, G. Wicks, P. Wnuk, Y. Stepanenko, M. Drobizhev, A. Rebane, K. S. Schanze, J. Am. Chem. Soc. 2012, 134, 19346.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y.-L. Wu, F. Bureš, P. D. Jarowski, W. B. Schweizer, C. Boudon, J.-P. Gisselbrecht, F. Diederich, Chem. Eur. J. 2010, 16, 9592.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. R. Tykivinski, M. Schreiber, P. Seiler, F. Diederich, V. Gramlich, Adv. Mater. 1996, 8, 226.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. R. Tykwinski, F. Diederich, Liebigs Ann. 1997, 1997, 649.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) Y.-Y. Lai, Y.-J. Cheng, C.-H. Chen, S.-W. Cheng, F.-Y. Cao, C.-S. Hsu, Polym. Chem. 2013, 4, 3333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlajtLg%3D&md5=e73a900b514e4b9da42184d5a9f84d4aCAS |
(b) S. Zhang, L. Ye, Q. Wang, Z. Li, X. Guo, L. Huo, H. Fan, J. Hou, J. Phys. Chem. C 2013, 117, 9550.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Lu, J. Fang, H. Yan, X. Zhu, Y. Yi, Z. Wei, Org. Electron. 2013, 14, 2652.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Sista, H. Nguyen, J. W. Murphy, J. Hao, D. K. Dei, K. Palaniappan, J. Servello, R. S. Kularatne, B. E. Gnade, B. Xue, P. C. Dastoor, M. C. Biewer, M. C. Stefan, Macromolecules 2010, 43, 8063.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li, Y. Yang, Macromolecules 2008, 41, 6012.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFSktbg%3D&md5=7d97e6e9a299820d10e64d6916c3d48dCAS |
(b) M. Toba, T. Nakashima, T. Kawai, J. Polym. Sci. Part A 2011, 49, 1895.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Najari, S. Beaupré, P. Berrouard, Y. Zou, J.-R. Pouliot, C. Lepage-Pérusse, M. Leclerc, Adv. Funct. Mater. 2011, 21, 718.
| Crossref | GoogleScholarGoogle Scholar |
[11] H. J. Son, W. Wang, T. Xu, Y. Liang, Y. Wu, G. Li, L. Yu, J. Am. Chem. Soc. 2011, 133, 1885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKlsrs%3D&md5=cbbf1e8605c0a1a1e2f79b536ad03e7bCAS | 21265569PubMed |
[12] (a) Y.-H. So, S. J. Martin, B. Bell, C. D. Pfeiffer, R. M. Van Effen, B. L. Romain, S. M. Lefkowitz, Macromolecules 2003, 36, 4699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlWrurc%3D&md5=876d128b166fbffa5cbf46a42426770fCAS |
(b) J. F. Wolfe, in Encyclopedia of Polymer Science, Engineering, 1988, Vol. 11, pp. 601–635 (John Wiley & Sons: New York, NY).
[13] (a) J. Intemann, J. Mike, M. Cai, S. Bose, T. Xiao, T. Mauldin, R. Roggers, J. Shinar, R. Shinar, M. Jeffries-EL, Macromolecules 2011, 44, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqsbrE&md5=923fb0fac955c5e502b1e06842a84e75CAS |
(b) J. J. Intemann, E. S. Hellerich, B. C. Tlach, M. D. Ewan, C. A. Barnes, A. Bhuwalka, M. Cai, J. Shinar, R. Shinar, M. Jeffries-El, Macromolecules 2012, 45, 6888.
| Crossref | GoogleScholarGoogle Scholar |
[14] E. S. Hellerich, J. J. Intemann, M. Cai, R. Liu, M. D. Ewan, B. C. Tlach, M. Jeffries-EL, R. Shinar, J. Shinar, J. Mater. Chem. C 2013, 1, 5191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ent7nI&md5=c9b251debd58674d8e55f1c12d27b5d3CAS |
[15] B. C. Tlach, A. L. Tomlinson, A. Bhuwalka, M. Jeffries-El, J. Org. Chem. 2011, 76, 8670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OnsbnO&md5=eadf3186e5d9a1a1e0b95dac04212e2cCAS | 21970518PubMed |
[16] (a) E. Ripaud, Y. Olivier, P. Leriche, J. M. Cornil, J. Roncali, J. Phys. Chem. B 2011, 115, 9379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFyltrw%3D&md5=d314c388117945300e1da06b81ddf330CAS | 21702447PubMed |
(b) J. N. Wilson, P. M. Windscheif, U. Evans, M. L. Myrick, U. H. F. Bunz, Macromolecules 2002, 35, 8681.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. F. Mike, J. J. Intemann, M. Cai, T. Xiao, R. Shinar, J. Shinar, M. Jeffries-EL, Polym. Chem. 2011, 2, 2299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eis73J&md5=18b66b2f4fdc84ceeec47f4ea24822f4CAS |
[18] (a) C. H. Woo, B. C. Thompson, B. J. Kim, M. F. Toney, J. M. J. Fréchet, J. Am. Chem. Soc. 2008, 103, 16324.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Van Pham, H. B. Mark, H. Zimmer, Synthetic Commun. 1986, 16, 689.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. E. Tschitschibabin, Ber. Dtsch. Chem. Ges. 1905, 38, 771.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XhtF2hsr0%3D&md5=55ed838a92c1379fd2e7e380873ae0caCAS |
[20] J. F. Mike, A. J. Makowski, M. Jeffries-EL, Org. Lett. 2008, 10, 4915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sjt7rE&md5=3b3446d3f4683d7698a33e3c11af205fCAS | 18831556PubMed |
[21] L. S. Heqedus, R. R. Odle, P. M. Winton, P. R. Weider, J. Org. Chem. 1982, 47, 2607.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktVGqsrk%3D&md5=886499262d19869bf1b3e99c761c45f5CAS |
[22] (a) W. Li, H. Li, Y. Li, Z. Hou, Angew. Chem. Int. Ed. 2006, 45, 7609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12iurfM&md5=93b3b8a722406375184d0586f2a86210CAS |
(b) N. Aratani, A. Takagi, Y. Yanagawa, T. Matsumoto, T. Kawai, Z. S. Yoon, D. Kim, A. Osuka, Chem. Eur. J. 2005, 11, 3389.
| Crossref | GoogleScholarGoogle Scholar |
[23] P. Beimling, G. Kobmehl, Chem. Ber. 1986, 119, 3198.
| 1:CAS:528:DyaL2sXhvVCjsg%3D%3D&md5=c23cad38d1dbc6ca7254f0bcb73425b4CAS |
[24] (a) T. E. Kang, H.-H. Cho, C.-H. Cho, K.-H. Kim, H. Kang, M. Lee, S. Lee, B. Kim, C. Im, B. J. Kim, ACS Appl. Mater. Interfaces 2013, 5, 861.
| Crossref | GoogleScholarGoogle Scholar | 23289501PubMed |
(b) J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li, Y. Yang, Macromolecules 2008, 41, 6012.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Accounts Chem. Res. 2010, 43, 1396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrsLvK&md5=ee19e1c684aad53f8055b0cbaabdb8ddCAS |
[26] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater. 2011, 23, 2367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1Sku7o%3D&md5=b6e89be39199d6062fba2a8c2c6b0e58CAS | 21462372PubMed |
[27] A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=07b5db1ad16095213051ca7100675a32CAS |
[28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. C. Robb, Jr, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian Inc.: Wallingford, CT, 2004.
[29] (a) H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer, Mat. Sci. Eng. R. 2001, 32, 1.
| Crossref | GoogleScholarGoogle Scholar |
(b) E. E. Havinga, W. ten Hoeve, H. Wynberg, Polym. Bull. 1992, 29, 000.
[30] (a) J. Mike, K. Nalwa, A. Makowski, D. Putnam, A. Tomlinson, S. Chaudhary, M. Jeffries-EL, Phys. Chem. Chem. Phys. 2011, 13, 1338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Oqsw%3D%3D&md5=433a8c2145f176d475cd540e3ef3e789CAS | 21082114PubMed |
(b) B. Milián Medina, A. VanVooren, P. Brocorens, J. Gierschner, M. Shkunov, M. Heeney, I. McCulloch, R. Lazzaroni, J. Cornil, Chem. Mater. 2007, 19, 4949.
| Crossref | GoogleScholarGoogle Scholar |