Structural Diversity and Properties of Five 3D Metal–Organic Frameworks Based on a Pyridine-substituted Triazolyl Benzoate Ligand
Fen-Jun Jiang A , Ming Zhang B , Xiao-Hua Wei B , Lin-Yan Yang B , Sheng-Yun Liao B , Pei-Yao Du B , Jin-Lei Tian B , Wen Gu B and Xin Liu B CA School of Medicine, Nankai University, Tianjin, China 300071.
B Department of Chemistry, Nankai University, Tianjin, China 300071.
C Corresponding author. Email: liuxin64@nankai.edu.cn
Australian Journal of Chemistry 67(2) 302-310 https://doi.org/10.1071/CH13458
Submitted: 31 August 2013 Accepted: 16 October 2013 Published: 28 November 2013
Abstract
Three new 3D metal–organic frameworks, namely {[Zn(L)2]}n (2), {[Cu(L)3H2O]3H2O}n (4), and {[Ag(L)]3H2O}n (5) where HL = 4-[3-methyl-5-(pyridin-4-yl)-1,2,4-triazol-4-yl]benzoate, have been synthesized by reaction of the HL ligand and ZnII, CuII, and AgI salts under similar experimental conditions. By introducing the secondary ligand terephthalic acid (H2bdc), another two new compounds {[Zn1.5L2(bdc)0.5]3H2O}n (1) and {[Cu(L)(bdc)0.5H2O]}n (3) with different 3D structures were obtained. Compound 1 possesses a three-fold interpenetrating framework, with {32.42.54.62}2{32.42.56.65} topology. To the best of our knowledge, 2 is an unusual example of four-fold framework guest-free metal organic framework material. Compound 3 reveals a seven-connected ose topology; magnetic susceptibility measurements indicate that it has dominating antiferromagnetic couplings between metal centres. Photoluminescence measurements of 1, 2, and 5 in the solid state at room temperature show that all coordination networks exhibit a red shift in the emission spectra, which can be assigned to an intraligand π-π* transition.
References
[1] (a) For recent reviews, see: S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=501b3993531b6c708f47075e80f1bc45CAS |
(b) G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, Acc. Chem. Res. 2005, 38, 217.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, M. J. Rosseinsky, Acc. Chem. Res. 2005, 38, 273.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. J. Murray, M. Dinca, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O. O’Keeffe, M. Yaghi, Acc. Chem. Res. 2010, 43, 58.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) B. Moulton, J. J. Lu, R. Hajndl, S. Hariharan, M. J. Zaworotko, Angew. Chem. Int. Ed. 2002, 41, 2821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1emsrg%3D&md5=2909b8c1c8a595dcee6e8b5a9a86bfccCAS |
(b) L. Q. Ma, W. B. Lin, Angew. Chem. Int. Ed. 2009, 48, 3637.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Liu, J. Eubank, A. Cairns, J. Eckert, V. Ch. Kravtsov, R. Luebke, M. Eddaoudi, Angew. Chem. Int. Ed. 2007, 46, 3278.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q. Fang, G. Zhu, M. Xue, J. Sun, Y. Wei, S. Qiu, R. Xu, Angew. Chem. Int. Ed. 2005, 44, 3845.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. M. Jin, Z. Zhu, Z. F. Chen, Y. J. Hu, X. G. Meng, Cryst. Growth Des. 2010, 10, 2054.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. H. Zeng, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long, M. J. Kurmoo, J. Am. Chem. Soc. 2010, 132, 2561.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) M. P. Suh, H. J. Park, T. K. Prasad, D. W. Lim, Chem. Rev. 2012, 112, 782.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsbjM&md5=37b56dc1e2f07e8d6e3f8468bd533f14CAS | 22191516PubMed |
(b) J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, Chem. Soc. Rev. 2012, 41, 2308.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. L. Jiang, D. W. Feng, T. F. Liu, J. R. Li, H. C. J. Zhou, J. Am. Chem. Soc. 2012, 134, 14690.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. J. Zhang, W. Y. Gao, L. Wojtas, S. Q. Ma, M. Eddaoudi, M. J. Zaworotko, Angew. Chem. Int. Ed. 2012, 124, 9464.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. X. Tan, Y. P. He, J. Zhang, Chem. Commun. 2011, 10647.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) J. Rocha, L. D. Carlos, F. A. A. Paz, D. Ananias, Chem. Soc. Rev. 2011, 40, 926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFSktA%3D%3D&md5=853a4233cfd90f1de5cd972c3c14ee04CAS | 21180775PubMed |
(b) S. Liu, Z. Xiang, Z. Hu, X. Zheng, D. J. Cao, Mater. Chem. 2011, 21, 6649.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed. 2009, 48, 500.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOlt7rF&md5=576654e72d281875b36f57646a5d5792CAS | 22084838PubMed |
(b) L. Q. Ma, C. Abney, W. B. Lin, Chem. Soc. Rev. 2009, 38, 1248.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Liu, W. Xuan, Y. Cui, Adv. Mater. 2010, 22, 4112.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Y. Wu, C. He, J. Wang, X. J. Peng, X. Z. Li, Y. L. An, C. Y. J. Duan, J. Am. Chem. Soc. 2012, 134, 14991.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) L.-F. Ma, C.-P. Li, L.-Y. Wang, M. Du, Cryst. Growth Des. 2011, 11, 3309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVKqu78%3D&md5=421c38e5df3bfdd0f7fd136b8e765198CAS |
(b) C. Qin, X.-L. Wang, E.-B. Wang, Z.-M. Su, Inorg. Chem. 2008, 47, 5555.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. H. Cui, Y. Z. Li, Z. J. Guo, H. G. Zheng, Cryst. Growth Des. 2012, 12, 3610.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q.-Y. Yang, K. Li, J. Luo, M. Pana, C.-Y. Su, Chem. Commun. 2011, 4234.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. J. Hansen, S. R. White, N. R. Sottos, J. A. Lewis, Adv. Funct. Mater. 2011, 21, 4320.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. M. Blake, J. S. Lucas, R. L. LaDuca, Cryst. Growth Des. 2011, 11, 1287.
| Crossref | GoogleScholarGoogle Scholar |
(g) K. M. Blake, J. S. Lucas, R. L. LaDuca, Cryst. Growth Des. 2011, 11, 1287.
| Crossref | GoogleScholarGoogle Scholar |
(h) X.-D. Chen, X.-H. Zhao, M. Chen, M. Du, Chem. Eur. J. 2009, 15, 12974.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFCrsA%3D%3D&md5=e5b6e7c3d763e0f323d852af291b3c6eCAS | 15672175PubMed |
(b) Z. Guo, H. Wu, S. Gadipelli, T. Liao, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O’Keeffe, B. Chen, Angew. Chem. Int. Ed. 2011, 50, 3178.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. L. C. Rowsell, O. M. J. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitV2msg%3D%3D&md5=68569d5bab0e4f3c6ae474e2d2607932CAS |
(b) D. Sun, S. Ma, Y. Ke, T. M. Petersen, H.-C. Zhou, Chem. Commun. 2005, 2663.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Ma, H.-C. J. Zhou, J. Am. Chem. Soc. 2006, 128, 11734.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Ma, X. Wang, D. Yuan, H.-C. Zhou, Angew. Chem. Int. Ed. 2008, 47, 4130.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSiuro%3D&md5=96dcac380a1db29dda69820358193182CAS |
(b) G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 2005, 309, 2040.
| Crossref | GoogleScholarGoogle Scholar |
(c) X.-H. Chang, J.-H. Qin, L.-F. Ma, J.-G. Wang, L.-Y. Wang, Cryst. Growth Des. 2012, 12, 4649.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J.-H. Lee, J.-S. Chang, S. H. Jhung, G. Férey, Angew. Chem. 2006, 118, 8407.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) Y. Q. Lan, X. L. Wang, S. L. Li, Z. M. Su, K. Z. Shao, E. B. Wang, Chem. Commun. 2007, 4863.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOgtLzI&md5=d0c20df4e5255abaf2648e44dc7bfc88CAS |
(b) P. K. Chen, S. R. Batten, Y. Qi, J. M. Zheng, Cryst. Growth Des. 2009, 9, 2756.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Q. Wang, J. Y. Zhang, Q. X. Jia, E. Q. Gao, C. M. Liu, Inorg. Chem. 2009, 48, 789.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. F. Ma, L. Y. Wang, Y. Y. Wang, S. R. Batten, J. G. Wang, Inorg. Chem. 2009, 48, 915.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. R. Zheng, Q. Y. Yang, R. Yang, M. Pan, R. Cao, C. Y. Su, Cryst. Growth Des. 2009, 9, 2341.
(f) D. R. Xiao, E. B. Wang, H. Y. An, Y. G. Li, Z. M. Su, C. Y. Sun, Chem. Eur. J. 2006, 12, 6528.
| Crossref | GoogleScholarGoogle Scholar |
[11] Z.-X. Li, T.-L. Hu, H. Ma, Y.-F. Zeng, C.-J. Li, M.-L. Tong, X.-H. Bu, Cryst. Growth Des. 2010, 10, 1138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKktLo%3D&md5=3ab5f6e9af5bc3f02a81c4798005b80dCAS |
[12] (a) M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem. Int. Ed. Engl. 1997, 36, 1725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSjtrw%3D&md5=7026310772508aca6dddcc35f3342a81CAS |
(b) K. N. Power, T. L. Hennigar, M. J. Zaworotko, New J. Chem. 1998, 22, 177.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. J. Kepert, M. J. Rosseinsky, Chem. Commun. 1999, 375.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Y. Fu, X. T. Wu, J. C. Dai, S. M. Hu, W. X. Du, New J. Chem. 2002, 26, 978.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) S. R. Zheng, Y. Yang, Y. R. Liu, J. Y. Zhang, Y. X. Tong, C. Y. Zhao, C. Y. Su, Chem. Commun. 2008, 356.
| Crossref | GoogleScholarGoogle Scholar |
(b) X. Y. Cao, J. Zhang, J. K. Cheng, Y. Kang, Y. G. Yao, CrystEngComm 2004, 6, 315.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Sun, S. N. Wang, H. Xing, J. F. Bai, Y. Z. Li, Y. Pan, X. Z. You, Inorg. Chem. 2007, 46, 8451.
| Crossref | GoogleScholarGoogle Scholar |
[14] Z. Y. Fu, X. T. Wu, J. C. Dai, L. M. Wu, C. P. Cui, S. M. Hu, Chem. Commun. 2001, 1856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFCitrg%3D&md5=d895e09a7db9a784d2734e7674017b57CAS |
[15] Y.-P. Wu, D.-S. Li, F. Fu, W.-W. Dong, J. Zhao, K. Zou, Y.-Y. Wang, Cryst. Growth Des. 2011, 11, 3850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFCiurw%3D&md5=331c12fa31c1ff789d4386d358679756CAS |
[16] L. F. Ma, Q. L. Meng, C. P. Li, B. Li, L. Y. Wang, M. Du, F. P. Liang, Cryst. Growth Des. 2010, 10, 3036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGit78%3D&md5=cf78b7264e0d41b7722c432b7c843931CAS |
[17] O. V. Sharga, A. B. Lysenko, H. Krautscheid, K. V. Domasevitch, Acta Crystallogr. 2010, C66, m269.