Two NiII Complexes with Interesting Topologies Constructed from 5-Aminoisophthalic Acid with Rigid Bis(imidazole) Ligands
Fang-Hua Zhao A , Xin Zheng A B and Yun-Xia Che A CA Department of Chemistry, Nankai University, Tianjin, 300071, China.
B Department of Chemistry and Chemical Biology, and Department of Pharmaceutical Chemistry, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA.
C Corresponding author. Email: cheyx@nankai.edu.cn
Australian Journal of Chemistry 67(4) 603-608 https://doi.org/10.1071/CH13431
Submitted: 20 August 2013 Accepted: 16 October 2013 Published: 6 November 2013
Abstract
Two new NiII complexes, [Ni2(AIP)2(bib)1.5]·4H2O (1) and [Ni(AIP)(bibp)(H2O)]·H2O (2) (AIP = 5-aminoisophthalic acid, bib = 1,4-bis(1-imidazolyl)benzene and bibp = 4,4′-bis(1-imidazolyl)biphenyl), have been synthesised hydrothermally and characterised by IR, elemental, single-crystal X-ray diffraction, and powder X-ray diffraction analyses. Topology analysis reveals that complex 1 is a 2D bilayer network, containing a new tetranodal (3,3,4,5)-connected (63)2(65·8)(68·82) configuration. Complex 2 exhibits a 2D→3D inclined polycatenate framework based on the 2D 44-sql net. In addition, the thermal stability of the two complexes was also studied.
References
[1] (a) M. O’Keeffe, Chem. Soc. Rev. 2009, 38, 1215.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu78%3D&md5=d1e1883313853dcd7656d5265ed50561CAS | 19384432PubMed |
(b) N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. F. Eubank, L. Wojtas, M. R. Hight, T. Bousquet, V. C. Kravtsov, M. Eddaoudi, J. Am. Chem. Soc. 2011, 133, 17532.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Schoedel, A. J. Cairns, Y. Belmabkhout, L. Wojtas, M. Mohamed, Z. Zhang, D. M. Proserpio, M. Eddaoudi, M. J. Zaworotko, Angew. Chem., Int. Ed. 2013, 52, 2902.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, J. Am. Chem. Soc. 1995, 117, 12861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslChsL8%3D&md5=58facfafe668d82b0b5a3acd04a52d57CAS |
(b) N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 1504.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. R. Evans, W. B. Lin, Acc. Chem. Res. 2002, 35, 511.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. J. Zaworotko, Chem. Soc. Rev. 1994, 23, 283.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) S. R. Batten, R. Robson, Angew. Chem., Int. Ed. 1998, 37, 1460.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev. 2003, 246, 247.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. A. Baburin, V. A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, J. Solid State Chem. 2005, 178, 2452.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. M. Proserpio, Nat. Chem. 2010, 2, 435.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) T. Steiner, Angew. Chem., Int. Ed. 2002, 41, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFWguw%3D%3D&md5=d5820009099c698c03f12b58e0b0e37cCAS |
(b) C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Russell, M. L. Scudder, I. G. Dance, J. Chem. Soc., Dalton Trans. 2001, 789.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) H. Wu, H. Y. Liu, J. Yang, B. Liu, J. F. Ma, Y. Y. Liu, Y. Y. Liu, Cryst. Growth Des. 2011, 11, 2317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFWrtrs%3D&md5=35265c28c452a7469a0753f926c153f7CAS |
(b) Y. Y. Liu, Y. Y. Jiang, J. Yang, Y. Y. Liu, J. F. Ma, CrystEngComm 2011, 13, 6118.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Günay, A. T. Çolak, O. Z. Yesşilel, S. Keskin, O. Büyükgüngör, Polyhedron 2012, 48, 199.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) J. Fan, B. E. Hanson, Inorg. Chem. 2005, 44, 6998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFSns7c%3D&md5=6611046ab438e20a913f1d3bd560735dCAS | 16180862PubMed |
(b) S. Zhang, S. Yang, J. Lan, Y. Tang, Y. Xue, J. You, J. Am. Chem. Soc. 2009, 131, 1689.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) M. Guo, Z. M. Sun, J. Mater. Chem. 2012, 22, 15939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCjsrfK&md5=5307d552b7f7cf575be17cae2c849b49CAS |
(b) S. S. Chen, G. C. Lv, J. Fan, T. Okamura, M. Chen, W. Y. Sun, Cryst. Growth Des. 2011, 11, 1082.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Xu, X. Q. Yao, L. F. Huang, Y. Z. Li, H. G. Zheng, CrystEngComm 2011, 13, 857.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. H. Zhao, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2012, 12, 4712.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. J. Cheng, H. X. Li, Z. G. Ren, C. N. Lü, J. Shi, J. P. Lang, CrystEngComm 2012, 14, 6064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2rt7zL&md5=43fd1d2eff7568d9c38dbdabfbe55d4bCAS |
[9] F. H. Zhao, S. Jing, Y. X. Che, J. M. Zheng, CrystEngComm 2012, 14, 4478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1ertrs%3D&md5=e07a8841c7101cfe43690b2ccdfedf9aCAS |
[10] Y. H. So, Macromolecules 1992, 25, 516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Clsg%3D%3D&md5=c4d373df2f406407e1faa593cc85b935CAS |
[11] CrystalClear, version 1.3.5 1999 (Rigaku Corp.: Woodlands, TX).
[12] G. M. Sheldrick, SHELX-97, Suite of Programs for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen).
[13] (a) X. W. Wang, J. Z. Chen, J. H. Liu, Cryst. Growth Des. 2007, 7, 1227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOkurY%3D&md5=4b94e23682373379b0ecd5534d4dd1ddCAS |
(b) R. Mondal, T. Basu, D. Sadhukhan, T. Chattopadhyay, M. K. Bhunia, Cryst. Growth Des. 2009, 9, 1095.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Sun, Y. Q. Wang, A. L. Cheng, K. Wang, E. Q. Gao, Cryst. Growth Des. 2012, 12, 2234.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) C. P. Li, J. Chen, Q. Yu, M. Du, Cryst. Growth Des. 2010, 10, 1623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFGntbc%3D&md5=9a7f85b5a35fd529d99cb5740fadc2cbCAS |
(b) M. Xue, G. Zhu, H. Ding, L. Wu, X. Zhao, Z. Jin, S. Qiu, Cryst. Growth Des. 2009, 9, 1481.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Luo, P. Wang, G. C. Xu, Q. Liu, K. Chen, Y. Lu, Y. Zhao, W. Y. Sun, Cryst. Growth Des. 2012, 12, 2634.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Wang, Y. Liu, C. Xu, Q. Guo, H. Hou, Y. Fan, Cryst. Growth Des. 2012, 12, 2435.
| Crossref | GoogleScholarGoogle Scholar |
[15] V. A. Blatov, Struct. Chem. 2012, 23, 955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKksrY%3D&md5=192e173789808ac3dc802a695ae0e951CAS |
[16] T. G. Mitina, V. A. Blatov, Cryst. Growth Des. 2013, 13, 1655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCgsL8%3D&md5=f8416ff7d2227d9590dfe211ac7e2a2aCAS |
[17] (a) S. S. Chen, G. C. Lv, J. Fan, T. Okamura, M. Chen, W. Y. Sun, Cryst. Growth Des. 2011, 11, 1082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWksL0%3D&md5=c67a47f67ac2286492004e84d5849919CAS |
(b) Y. Gong, J. Li, J. B. Qin, T. Wu, R. Cao, J. H. Li, Cryst. Growth Des. 2011, 11, 1662.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. J. Ke, D. S. Li, J. Zhao, L. Bai, J. J. Yang, Y. P. Duan, Inorg. Chem. Commun. 2012, 21, 129.
| Crossref | GoogleScholarGoogle Scholar |
[18] P. K. Chen, Y. X. Che, L. Xue, J. M. Zheng, Cryst. Growth Des. 2006, 6, 2517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSnsbfP&md5=d04fe5f882709a9703ad99e7070589d7CAS |