Structure, Thermal Behaviour, and Energetic Properties of 4-Amino-1,2,4-triazole Dinitroguanidine Salt
Xinghui Jin A , Bingcheng Hu A B , Huanqing Jia A , Zuliang Liu A and Chunxu Lu AA School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
B Corresponding author. Email: hubingcheng210094@163.com
Australian Journal of Chemistry 67(2) 277-282 https://doi.org/10.1071/CH13426
Submitted: 20 August 2013 Accepted: 4 October 2013 Published: 7 November 2013
Abstract
A novel nitrogen-rich energetic compound 4-amino-1,2,4-triazole dinitroguanidine salt (4-ATDNG) was synthesized and fully characterized. Its crystal, thermal behaviour, and detonation properties were investigated by X-ray diffraction, thermogravimetry-derivative thermogravimetry-differential scanning calorimetry (TG-DTG-DSC) coupling system, and the Kamlet–Jacobs equation. In view of the obtained values such as the critical temperature of thermal explosion (Tb, 186.36°C), entropy of activation (ΔS≠, 60.22 J mol–1 k–1), enthalpy of activation (ΔH≠, 143.24 kJ mol–1), free energy of activation (ΔG≠, 116.34 kJ mol–1), detonation pressure (P, 29.78 GPa), detonation velocity (V, 8.28 km s–1), and impact sensitivity (h50 = 135 cm), it is proposed that 4-ATDNG possesses excellent thermal stability and has the potential to be a useful energetic material in the future.
References
[1] M. H. V. Huynh, M. A. Hiskey, D. E. Chavez, D. L. Naud, R. D. Gilardi, J. Am. Chem. Soc. 2005, 127, 12537.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WisLw%3D&md5=ca05760d4efeb4876eac3a5ff2e579ccCAS |
[2] M. H. Keshavarz, J. Hazard. Mater. 2007, 141, 536.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Gjtrw%3D&md5=33cdfcd0789cbfe74a34e66ac609c950CAS | 16959409PubMed |
[3] D. E. Chavez, M. A. Hiskey, J. Energ. Mater. 1999, 17, 357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFequrs%3D&md5=aa4d6e3ec5027db347133add33b7b901CAS |
[4] D. E. Chavez, D. Parrish, D. N. Preston, I. W. Mares, Propellants Explos. Pyrotech. 2012, 37, 647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1emtbzL&md5=8859dd5ed5d45f1217869bd3dcc0f1abCAS |
[5] R. Wang, H. Xu, Y. Guo, R. Sa, J. M. Shreeve, J. Am. Chem. Soc. 2010, 132, 11904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVaru7c%3D&md5=dc67c5cc75e5ec85c4e4e7ece81b72aeCAS | 20690685PubMed |
[6] A. R. Katritzky, S. Singh, K. Kirichenko, J. D. Holbrey, M. Smiglak, W. M. Reichert, R. D. Rogers, Chem. Commun. 2005, 868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kqs78%3D&md5=83dcb3ea0cd7e24f67fbab997fa30ac0CAS |
[7] H. X. Gao, C. F. Ye, O. D. Gupta, J. C. Xiao, M. A. Hiskey, B. Twamley, J. M. Shreeve, Chem. Eur. J. 2007, 13, 3853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsl2isb8%3D&md5=356a549aa1a33acfa16f25cc0c4067baCAS |
[8] R. P. Singh, R. D. Verma, D. T. Meshri, J. M. Shreeve, Angew. Chem. 2006, 118, 3664.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. B. Jones, R. Haiges, T. Schroer, K. O. Christe, Angew. Chem. 2006, 118, 5103.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. R. Katritzky, S. Singh, K. Kirichenko, M. Smiglak, J. D. Holbrey, W. M. Reichert, S. K. Spear, R. D. Rogers, Chem. Eur. J. 2006, 12, 4630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVaitbs%3D&md5=97f81e0977d2accc7706fed8d492ee8aCAS | 16586524PubMed |
[11] G. W. Drake, T. W. Hawkins, L. A. Hall, J. A. Boatz, A. J. Brand, Propellants Explos. Pyrotech. 2005, 30, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1amu7nI&md5=cfcedfb14cbcce73a39f15b694aa8e92CAS |
[12] K. Karaghiosoff, T. M. Klapötke, P. Mayer, H. Piotrowski, K. Polborn, R. L. Willer, J. J. Weigand, J. Org. Chem. 2006, 71, 1295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslKitg%3D%3D&md5=15e5c0cf732e55e38b0f444ef0079c4eCAS | 16468775PubMed |
[13] Y. H. Joo, B. Twamley, S. Garg, J. M. Shreeve, Angew. Chem. 2008, 120, 6236.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. A. Astrat’yev, D. V. Dashko, L. L. Kuznetsov, Russ. J. Org. Chem. 2003, 39, 501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFWhtbk%3D&md5=cf1d747534504258148c02f4472dc1a0CAS |
[15] A. D. Vasiliev, A. M. Astachov, M. S. Molokeev, L. A. Kruglyakova, R. S. Stepanov, Acta Crystallogr. C 2003, 59, o550.
| Crossref | GoogleScholarGoogle Scholar | 14532667PubMed |
[16] T. Altenburg, T. M. Klapötke, A. Penger, J. Stierstorfer, Z. Anorg. Allg. Chem. 2010, 636, 463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlSjs70%3D&md5=32e13664ae852601407f541dd4a1a689CAS |
[17] C. F. Ye, J. C. Xiao, B. Twamley, J. M. Shreeve, Chem. Commun. 2005, 2750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFejsLw%3D&md5=8f56d96fe025c1dfe6e80db56ddc802aCAS |
[18] D. Sanz, M. Pérez-Torralba, S. H. Alarcón, R. M. Claramunt, C. Foces-Foces, J. Elguero, J. Org. Chem. 2002, 67, 1462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1aiug%3D%3D&md5=58c08c37f486a82b9531abc80761a506CAS | 11871874PubMed |
[19] H. E. Kissinger, Anal. Chem. 1957, 29, 1702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXivVequw%3D%3D&md5=eea37720fe8cb85b3c40d56909b20740CAS |
[20] T. Ozawa, Bull. Chem. Soc. Jpn. 1965, 38, 1881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XjtVyisQ%3D%3D&md5=92e3311c2ba5a37370e55b0737c27c14CAS |
[21] J. M. Salla, J. M. Morancho, A. Cadenato, X. Ramis, J. Therm. Anal. Calorim. 2003, 72, 719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWhsbw%3D&md5=052463123cfa15293f47cdcff1e3e32fCAS |
[22] J. H. Yi, F. Q. Zhao, S. Y. Xu, L. Y. Zhang, H. X. Gao, R. Z. Hu, J. Hazard. Mater. 2009, 165, 853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12lurc%3D&md5=11c1345a153fa105c9b7c32d34eb8927CAS | 19059712PubMed |
[23] C. D. Doyle, J. Appl. Polym. Sci. 1961, 5, 285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XkvFOrtg%3D%3D&md5=3fe2194ad016d89164b0aed34053d81aCAS |
[24] J. M. Criado, L. A. Perez-Maqueda, P. E. Sanchez-Jimenez, J. Therm. Anal. Calorim. 2005, 82, 671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFCqtA%3D%3D&md5=f8efa0076a07c13985f8c715bc4c6f94CAS |
[25] R. Z. Hu, S. P. Chen, S. L. Gao, F. Q. Zhao, Y. Luo, H. X. Gao, Q. Z. Shi, H. A. Zhao, P. Yao, J. Li, J. Hazard. Mater. 2005, 117, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFOk&md5=7ab77306209ff1f9dd2f3df5b4fea3deCAS |
[26] K. Z. Xu, H. Zhang, P. Liu, J. Huang, Y. H. Ren, B. Z. Wang, F. Q. Zhao, Propellants Explos. Pyrotech. 2012, 37, 653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGnu7nK&md5=a13ff125633ae79a52f29db92fedf7d2CAS |
[27] R. N. Rogers, J. L. Janney, M. H. Ebinger, Thermochim. Acta 1982, 59, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit12hug%3D%3D&md5=b6979f16048b7e6a3cfc738fb27c4b83CAS |
[28] J. M. Pickard, Thermochim. Acta 2002, 392–393, 37.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. Zhang, R. Hu, Y. Xie, F. Li, Thermochim. Acta 1994, 244, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVeisLs%3D&md5=cc355fec694341592397634e9e6a9d48CAS |
[30] M. Najafi, A. K. Samangani, Propellants Explos. Pyrotech. 2011, 36, 487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKksrvM&md5=a21512be6f7c535514a4f0bcf21716dbCAS |
[31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03 2003 (Gaussian Inc.: Pittsburgh, PA).
[32] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=5be02d73b432a9ccf155dbb749241880CAS |
[33] Z. Dega-Szafran, A. Katrusiak, M. Szafran, Aust. J. Chem. 2013, 66, 836.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCqsr%2FM&md5=00669e516c9ea8922493210a94ee1d50CAS |
[34] M. J. Kamlet, S. J. Jacobs, J. Chem. Phys. 1968, 48, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXntVOrtQ%3D%3D&md5=c74efc1d0979935af40eb69b9c446866CAS |
[35] H. D. B. Jenkins, D. Tudeal, L. Glasser, Inorg. Chem. 2002, 41, 2364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1CitrY%3D&md5=b47a1bc1c52c66bc2833070d2a4d6f40CAS |
[36] Y. G. Huang, Y. Q. Zhang, J. M. Shreeve, Chem. Eur. J. 2011, 17, 1538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrur8%3D&md5=2ad3773efda94eb24f34f685547bfb1dCAS |
[37] Z. Zeng, H. X. Gao, B. Twamley, J. M. Shreeve, J. Mater. Chem. 2007, 17, 3819..
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWktbfI&md5=f92f51caa6df9f419f459c5aeed1856dCAS |
[38] M. W. Schmidt, M. S. Gordon, J. A. Boatz, J. Phys. Chem. A 2005, 109, 7285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVymsbo%3D&md5=ebfe69a586d73af40ef34b538db64740CAS | 16834094PubMed |
[39] M. H. Keshavarz, H. R. Pouretedal, A. Semnani, J. Hazard. Mater. 2007, 141, 803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Gjtbo%3D&md5=171aac4ed64641a8b40bf836c515881dCAS | 16956725PubMed |