Azobenzene-Functionalised Core Cross-Linked Star Polymers and their Host–Guest Interactions
Shereen Tan A , Edgar H. H. Wong A , Qiang Fu A , Jing M. Ren A , Adrian Sulistio A , Katharina Ladewig A , Anton Blencowe A B C and Greg G. Qiao A CA Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.
B Mawson Institute, Division of ITEE, The University of South Australia, Mawson Lakes, SA 5095, Australia.
C Corresponding authors. Email: anton.blencowe@unisa.edu.au; gregghq@unimelb.edu.au
Anton Blencowe received his Master's degree in chemistry with honours from the University of Reading in 2002. He completed his Ph.D under the supervision of Professor Wayne Hayes at the University of Reading in 2006 before working as a post-doctoral fellow with Professor Greg Qiao at the University of Melbourne. In 2009, he was awarded an ARC Australian Postdoctoral Fellowship. Currently, he holds a Senior Research Fellow position at the University of South Australia. His research interests include, amongst other things, macromolecular engineering and self-assembly, polymer therapeutics, biomaterials, biomimetics, and nanomaterials. |
Professor Greg Qiao received his B.Eng. in polymer engineering from Donghua University in 1982 and his Ph.D. in synthetic organic chemistry from the University of Queensland in 1996. He then worked at the University of Melbourne, where he entered the field of synthetic polymer chemistry and engineering. He started as a lecturer in the Department of Chemical and Biomolecular Engineering in 2002, then was promoted to Senior Lecturer in 2004, Associate Professor and Reader in 2007, and full Professor in 2009. He has also been an ARC Future Fellow since 2012. His main research focuses on the synthesis of novel macromolecular architectures, polymeric membranes, functional polymers, and biomaterials. |
Australian Journal of Chemistry 67(1) 173-178 https://doi.org/10.1071/CH13425
Submitted: 15 August 2013 Accepted: 25 September 2013 Published: 1 November 2013
Abstract
Water-soluble poly(2-hydroxyethyl acrylate) (PHEA)-based core cross-linked star polymers were efficiently synthesised with high macroinitiator-to-star-conversion (>95 %) in a one-pot system via single electron transfer-living radical polymerisation. The star polymers display excellent water solubility and the pendant hydroxyl groups provide a platform for facile post-functionalisation with various molecules. In demonstrating this, a photo-isomerisable molecule, 4-(phenylazo)benzoic acid was conjugated onto the preformed stars through partial esterification of the available hydroxyl groups (5–20 %). The azobenzene functionalised stars were subsequently employed to form reversible inclusion complexes with α-cyclodextrin.
References
[1] D. A. Uhlenheuer, K. Petkau, L. Brunsveld, Chem. Soc. Rev. 2010, 39, 2817.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFyhu74%3D&md5=b2751e5d6006fb938bf3c46df729d290CAS | 20461247PubMed |
[2] G. Chen, M. Jiang, Chem. Soc. Rev. 2011, 40, 2254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWju74%3D&md5=b1b22ac397479006c251eab08766d90cCAS | 21344115PubMed |
[3] F. van de Manakker, T. Vermonden, C. F. van Nostrum, W. E. Hennink, Biomacromolecules 2009, 10, 3157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValurzM&md5=5c65a12d3606c265dec6c659fb4deac0CAS | 19921854PubMed |
[4] M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. 2013, 52, 5731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlejtLw%3D&md5=814b4091b9703e5cbb8d10e3b8a7802eCAS |
[5] Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270.
| Crossref | GoogleScholarGoogle Scholar | 23232400PubMed |
[6] T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Adv. Mater. 2013, 25, 2849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislyqtrw%3D&md5=2b9c6abffef41e2701003bd31d3202c5CAS | 23423947PubMed |
[7] S. Yu, Y. Zhang, X. Wang, X. Zhen, Z. Zhang, W. Wu, X. Jiang, Angew. Chem. Int. Ed. 2013, 52, 7272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVaktrs%3D&md5=b82765474dd24620f85e497173698377CAS |
[8] T. Ooya, H. S. Choi, A. Yamashita, N. Yui, Y. Sugaya, A. Kano, A. Maruyama, H. Akita, R. Ito, K. Kogure, H. Harashima, J. Am. Chem. Soc. 2006, 128, 3852.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFamsLg%3D&md5=d75daff793764e5fe76a1752a3412841CAS | 16551060PubMed |
[9] M. Paolino, F. Ennen, S. Lamponi, M. Cernescu, B. Voit, A. Cappelli, D. Appelhans, H. Komber, Macromolecules 2013, 46, 3215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Oqurk%3D&md5=aa057c4ab5b840b03d333e755808b79dCAS |
[10] J. Yan, X. Zhang, X. Zhang, K. Liu, W. Li, P. Wu, A. Zhang, Macromol. Chem. Phys. 2012, 213, 2003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOgsb7P&md5=9b82d894bdb2bc4050fcbed50bb91dcaCAS |
[11] A. Blencowe, J. F. Tan, T. K. Goh, G. G. Qiao, Polymer 2009, 50, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFyjsA%3D%3D&md5=53f02dd19a86b1050689bd614ff7fe98CAS |
[12] H. Gao, K. Matyjaszewski, Prog. Polym. Sci. 2009, 34, 317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2hsL8%3D&md5=7a0c97e8bb1edc2fe69b51f56a52e11fCAS |
[13] T. K. Goh, K. D. Coventry, A. Blencowe, G. G. Qiao, Polymer 2008, 49, 5095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12rt7vN&md5=bf0403aad59c40a4d75a18b07254943dCAS |
[14] N. Hadjichristidis, J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVait7Y%3D&md5=a026e113dfe3ff27435ee5ec3172afb0CAS |
[15] J. P. Kennedy, S. Jacob, Acc. Chem. Res. 1998, 31, 835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtV2htrk%3D&md5=cce7c8b40eda9bd71ab41fa63900b72bCAS |
[16] T. Terashima, M. Kamigaito, K.-Y. Baek, T. Ando, M. Sawamoto, J. Am. Chem. Soc. 2003, 125, 5288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVCltr8%3D&md5=2993ddbd9372a6fa3103feedb7150910CAS | 12720436PubMed |
[17] Y. Koda, T. Terashima, A. Nomura, M. Ouchi, M. Sawamoto, Macromolecules 2011, 44, 4574.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOju7Y%3D&md5=f0f483a1dc0df3447646c759948407aeCAS |
[18] S. Spoljaric, T. K. Goh, A. Blencowe, G. G. Qiao, R. A. Shanks, Macromol. Chem. Phys. 2011, 212, 1778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslSltb0%3D&md5=ddbb15742343ea5285823a041ef802aaCAS |
[19] B.-S. Kim, H. Gao, A. A. Argun, K. Matyjaszewski, P. T. Hammond, Macromolecules 2009, 42, 368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOitrrP&md5=19d2eefcb1f6e91745542b161a679beeCAS |
[20] Z. Zhang, X. Hao, P. A. Gurr, A. Blencowe, T. C. Hughes, G. G. Qiao, Aust. J. Chem. 2012, 65, 1186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmu7%2FF&md5=01551dcc35a6e29d506635aff83b09b1CAS |
[21] L. A. Connal, G. G. Qiao, Adv. Mater. 2006, 18, 3024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSmsbnO&md5=9fa2df526403fc06f6fc31bc8ce9dcdfCAS |
[22] A. Sulistio, J. Lowenthal, A. Blencowe, M. N. Bongiovanni, L. Ong, S. L. Gras, X. Zhang, G. G. Qiao, Biomacromolecules 2011, 12, 3469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSks7rI&md5=73508ccdd0f1f4527f4fbcaf7530078dCAS | 21854075PubMed |
[23] H. Y. Cho, A. Srinivasan, J. Hong, E. Hsu, S. Liu, A. Shrivats, D. Kwak, A. K. Bohaty, H.-j. Paik, J. O. Hollinger, K. Matyjaszewski, Biomacromolecules 2011, 12, 3478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWqt73K&md5=3f18e2e657b0656968ca63209a40feefCAS | 21894897PubMed |
[24] J. T. Wiltshire, G. G. Qiao, Aust. J. Chem. 2007, 60, 699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKgur7M&md5=ddec9103247169480efa94fdbce25f4cCAS |
[25] J. Liu, H. Duong, M. R. Whittaker, T. P. Davis, C. Boyer, Macromol. Rapid Commun. 2012, 33, 760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFSqsLY%3D&md5=7a88219e84b407253fddcd9eee448cafCAS | 22495770PubMed |
[26] C. T. Adkins, J. N. Dobish, C. S. Brown, B. Mayrsohn, S. K. Hamilton, F. Udoji, K. Radford, T. E. Yankeelov, J. C. Gore, E. Harth, Polym. Chem. 2012, 3, 390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlehsA%3D%3D&md5=3360ba5ac5258322403ec2bd6346efcaCAS |
[27] A. Sulistio, A. Widjaya, A. Blencowe, X. Zhang, G. Qiao, Chem. Commun. 2011, 47, 1151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyitw%3D%3D&md5=d4667b03c47ed97bfee2f68e4b4b5369CAS |
[28] M. Zhang, Q. Xiong, J. Chen, Y. Wang, Q. Zhang, Polym. Chem. 2013, 4, 5086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCltr3J&md5=5cc84bc08a40b26036abbb084f4284e4CAS |
[29] J. M. Ren, J. T. Wiltshire, A. Blencowe, G. G. Qiao, Macromolecules 2011, 44, 3189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Wgurg%3D&md5=0d3975f2dbbd59df01e425e86744f73dCAS |
[30] J. M. Ren, Q. Fu, A. Blencowe, G. G. Qiao, ACS Macro Lett. 2012, 1, 681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Wktbs%3D&md5=ee89652ef9e850ae8c2430d01a4e8907CAS |
[31] A. Sulistio, P. A. Gurr, A. Blencowe, G. G. Qiao, Aust. J. Chem. 2012, 65, 978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmu7zO&md5=9e570cfd99271b86c33c35357bc716b1CAS |
[32] W. Li, K. Matyjaszewski, J. Am. Chem. Soc. 2009, 131, 10378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2htr0%3D&md5=a990760ec9ff2d0e0c2173bca9b34ba8CAS | 19591483PubMed |
[33] T. Shibata, S. Kanaoka, S. Aoshima, J. Am. Chem. Soc. 2006, 128, 7497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslKhsr8%3D&md5=68f510134e4d0913134a671795e14545CAS | 16756304PubMed |
[34] S. Kanaoka, N. Yagi, Y. Fukuyama, S. Aoshima, H. Tsunoyama, T. Tsukuda, H. Sakurai, J. Am. Chem. Soc. 2007, 129, 12060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCntbvI&md5=d42f529450ecc992f94a32ce979b2e12CAS | 17877346PubMed |
[35] G. C. Bazan, R. R. Schrock, Macromolecules 1991, 24, 817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXot1Krtg%3D%3D&md5=f676948afbe40ca2c56408370189024fCAS |
[36] T. K. Goh, S. Yamashita, K. Satoh, A. Blencowe, M. Kamigaito, G. G. Qiao, Macromol. Rapid Commun. 2011, 32, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVahtrc%3D&md5=3621f638bc87a51c2b7a1ed7fafaf21eCAS | 21433199PubMed |
[37] J. Burdyńska, H. Y. Cho, L. Mueller, K. Matyjaszewski, Macromolecules 2010, 43, 9227.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. Ferreira, J. Syrett, M. Whittaker, D. Haddleton, T. P. Davis, C. Boyer, Polym. Chem. 2011, 2, 1671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslKltL0%3D&md5=89e9aad73627b722e576fc8564a6bcc0CAS |
[39] E. H. H. Wong, A. Blencowe, G. G. Qiao, Polym. Chem. 2013, 4, 4562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Sks7nO&md5=5771af2a83cfe63df9c3fefcc0947e2eCAS |
[40] A. H. Soeriyadi, C. Boyer, F. Nyström, P. B. Zetterlund, M. R. Whittaker, J. Am. Chem. Soc. 2011, 133, 11128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlaisL4%3D&md5=747c9ff0cb3d1f8cfe12a95ec3af39d0CAS | 21707082PubMed |
[41] C. Boyer, A. H. Soeriyadi, P. B. Zetterlund, M. R. Whittaker, Macromolecules 2011, 44, 8028.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyksrjI&md5=1c26e79e789ac954d519b80f25718e7bCAS |
[42] V. Percec, T. Guliashvili, J. S. Ladislaw, A. Wistrand, A. Stjerndahl, M. J. Sienkowska, M. J. Monteiro, S. Sahoo, J. Am. Chem. Soc. 2006, 128, 14156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7jK&md5=a75f1a58b6d122159f0da0f9317c6bc3CAS | 17061900PubMed |
[43] M. E. Levere, I. Willoughby, S. O’Donohue, A. de Cuendias, A. J. Grice, C. Fidge, C. R. Becer, D. M. Haddleton, Polym. Chem. 2010, 1, 1086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ms7fJ&md5=7df7deb0f350c3f5dd6469b57bb0ea15CAS |
[44] S. A. Bencherif, H. Gao, A. Srinivasan, D. J. Siegwart, J. O. Hollinger, N. R. Washburn, K. Matyjaszewski, Biomacromolecules 2009, 10, 1795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFCmurs%3D&md5=233a041cc852a225380fd940b31c52a0CAS | 19518096PubMed |
[45] W. Li, K. Matyjaszewski, Macromol. Rapid Commun. 2011, 32, 74.
| Crossref | GoogleScholarGoogle Scholar | 21432973PubMed |
[46] W. Zhu, M. Zhong, W. Li, H. Dong, K. Matyjaszewski, Macromolecules 2011, 44, 1920.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVShu74%3D&md5=8fb5dd476166b9437ed720e712136f02CAS |
[47] Z. Wu, H. Liang, J. Lu, Macromolecules 2010, 43, 5699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Shtbc%3D&md5=59552baecc8dd3203b88870a62bf5568CAS |
[48] T. Terashima, M. Ouchi, T. Ando, M. Kamigaito, M. Sawamoto, Macromolecules 2007, 40, 3581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVyhtrc%3D&md5=31c69571397fbb6f42308b511bcb10a1CAS |
[49] A. Narumi, Y. Ohashi, D. Togashi, Y. Saito, Y. Jinbo, Y. Izumi, K. Matsuda, T. Kakuchi, S. Kawaguchi, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns12qu7g%3D&md5=4456a0f0e6d0d1c694ba04ba3c4132f1CAS |
[50] M. Müller, T. Rieser, P. L. Dubin, K. Lunkwitz, Macromol. Rapid Commun. 2001, 22, 390.
| Crossref | GoogleScholarGoogle Scholar |
[51] H.-Y. Yu, J. Zhou, J.-S. Gu, S. Yang, J. Membr. Sci. 2010, 364, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlentb%2FO&md5=914333f3915119a53bffd7aa7f0976ecCAS |
[52] S. N. Guntari, E. H. H. Wong, T. K. Goh, R. Chandrawati, A. Blencowe, F. Caruso, G. G. Qiao, Biomacromolecules 2013, 14, 2477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVeisL3I&md5=2cec92eff16872c36f6f00b6c2b6c21cCAS | 23819800PubMed |
[53] S. Krishnan, C. J. Weinman, C. K. Ober, J. Mater. Chem. 2008, 18, 3405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFSntb4%3D&md5=d76b22f71cbbedffdfaad7b8c3ec21deCAS |
[54] H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603.
| Crossref | GoogleScholarGoogle Scholar | 22215078PubMed |
[55] X. Liao, G. Chen, X. Liu, W. Chen, F. Chen, M. Jiang, Angew. Chem. Int. Ed. 2010, 49, 4409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyntLo%3D&md5=254a327908d2dd74a2464c3a83dc5b87CAS |
[56] F. Nyström, A. H. Soeriyadi, C. Boyer, P. B. Zetterlund, M. R. Whittaker, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 5313.
| Crossref | GoogleScholarGoogle Scholar |
[57] T. Taira, Y. Suzaki, K. Osakada, Chem. Commun. 2009, 7027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2iu77O&md5=0945ad3c836f26e80e1e39a5ff8e1658CAS |
[58] Q. Fu, J. M. Ren, G. G. Qiao, Polym. Chem. 2012, 3, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlemsQ%3D%3D&md5=288c7f9f860fe07408f0b2c950040138CAS |
[59] S. Tan, A. Blencowe, K. Ladewig, G. G. Qiao, Soft Matter 2013, 9, 5239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntV2isLg%3D&md5=93e30270388bb5e9a2100888d8cc7301CAS |