Quantum-chemical Ab Initio Calculations on the Donor–Acceptor Complex Pyridine–Borabenzene (C5H5N–BC5H5)
Mohammed Mbarki A , Marc Oettinghaus A and Gerhard Raabe A BA Department of Organic Chemistry, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
B Corresponding author. Email: gerd.raabe@thc.rwth-aachen.de
Australian Journal of Chemistry 67(2) 266-276 https://doi.org/10.1071/CH13407
Submitted: 3 August 2013 Accepted: 2 October 2013 Published: 7 November 2013
Abstract
The adduct of borabenzene (C5H5B) and pyridine (C5H5N) was studied by means of quantum-chemical ab initio and time-dependent density functional theory calculations at different levels of theory. In the fully optimized structure (MP2/6-311++G**) of the free donor–acceptor complex (C2), the C–B–C angle amounts to 120.6°. The planes of the two aromatic rings enclose a torsion angle of ~40° with a barrier to rotation about the B–N bond of less than 3 kcal mol–1 (1 kcal mol–1 = 4.186 kJ mol–1). The highest computational level applied in this study (complete basis set limit, coupled cluster with single and double excitations (CCSD)) results in an energy associated with the reaction of borabenzene with pyridine of –52.2 kcal mol–1. Natural bond orbital analyses were performed to study the bond between the borabenzene and the pyridine unit of the adduct. The UV-vis spectrum of the adduct was calculated employing time-dependent density functional theory methods and the symmetry-adapted cluster-configuration interaction method. Our calculated electronic excitation spectrum of the pyridine adduct as well as its spectrum of the normal modes qualitatively reproduce the characteristic features of the IR and the UV-vis spectra described by experimentalists and thus allows assignment of the observed absorption bands, which in part agree with those by other authors.
References
[1] (a) G. Maier, H. P. Reisenauer, J. Henkelmann, C. Kliche, Angew. Chem. Int. Ed. Engl. 1988, 27, 295.(b) G. Maier, H. P. Reisenauer, J. Henkelmann, C. Kliche, Angew. Chem. 1988, 100, 303.
| Crossref | GoogleScholarGoogle Scholar |
[2] R. Boese, N. Finke, J. Henkelmann, G. Maier, P. Paetzold, H. P. Reisenauer, G. Schmid, Chem. Ber. 1985, 118, 1644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlOmsLw%3D&md5=6f15ff42fbd5760ee399571d54b67324CAS |
[3] G. Maier, Pure Appl. Chem. 1986, 58, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXosVKlug%3D%3D&md5=8c6face679e8c48dd1ea8eaca2f57ce6CAS |
[4] G. Raabe, E. Heyne, W. Schleker, J. Fleischhauer, Z. Naturforsch. A 1984, 39, 678.
[5] G. Raabe, W. Schleker, E. Heyne, J. Fleischhauer, Z. Naturforsch. A 1987, 42, 352.
| 1:CAS:528:DyaL2sXitVChsbs%3D&md5=b9200e10f56cb315189965dafa4328eaCAS |
[6] J. M. Schulman, R. L. Disch, Organometallics 1989, 8, 733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFCrurk%3D&md5=29606dfdb79f735c0a623737d62aa752CAS |
[7] J. Cioslowski, P. J. Hay, J. Am. Chem. Soc. 1990, 112, 1707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpvVGqtA%3D%3D&md5=c17a6bfe01fdfb9dfc4d35b7fbce6384CAS |
[8] P. B. Karadakov, M. Ellis, J. Gerratt, D. L. Cooper, M. Raimondi, Int. J. Quantum Chem. 1997, 63, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVSitr0%3D&md5=2fc10747f6de947cc646f9774dee9c45CAS |
[9] M. C. Böhm, J. Schütt, U. Schmitt, J. Phys. Chem. 1993, 97, 11427.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. G. Semenov, Yu. F. Sigolaev, Russ. J. Gen. Chem. 2006, 76, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVOns7c%3D&md5=1dac7531c77b4fa1a9fc97f7e6e9c25eCAS |
[11] S. G. Semenov, Yu. F. Sigolaev, Russ. J. Gen. Chem. 2006, 76, 1925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFWltLc%3D&md5=b9abde1dd398e82fc8fa5b35e59ca95cCAS |
[12] G. Raabe, M. Baldofski, Aust. J. Chem. 2011, 64, 957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyitrs%3D&md5=6bcecb996c238678a2b8fe935e59f274CAS |
[13] G. Briegleb, Elektronen-Donator–Acceptor-Komplexe 1961 (Springer Verlag: Berlin, Göttingen, Heidelberg).
[14] R. S. Mulliken, J. Am. Chem. Soc. 1952, 74, 811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38Xjt1SktQ%3D%3D&md5=930389799dd1d5ff06bc7c3c80b786abCAS |
[15] V. Jonas, G. Frenking, J. Chem. Soc. Chem. Commun. 1994, 1489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvFansL0%3D&md5=7e90bf69ab1dde00b145118c493fe3afCAS |
[16] V. Jonas, G. Frenking, M. T. Reetz, J. Am. Chem. Soc. 1994, 116, 8741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVOru7Y%3D&md5=1e0397a63e66e4eaa9311bc58828f62aCAS |
[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).
[18] (a) J. Čížek, Adv. Chem. Phys. 1969, 14, 35.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. E. Scuseria, H. F. Schaefer, J. Chem. Phys. 1989, 90, 3700.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=d4e9cc0e43c2e0f1a0ea5fbf96cf32b6CAS |
(b) R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. A. Peterson, D. E. Woon, T. H. Dunning, J. Chem. Phys. 1994, 100, 7410.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. K. Wilson, T. van Mourik, T. H. Dunning, J. Mol. Struct. THEOCHEM 1996, 388, 339.
[20] (a) D. G. Truhlar, Chem. Phys. Lett. 1998, 294, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVGjsbg%3D&md5=2af7c776a4de328e3f2e2aa509aff051CAS |
(b) P. L. Fast, M. L. Sánchez, D. G. Truhlar, J. Chem. Phys. 1999, 111, 2921.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold. NBO 3.0 Program Manual (Natural Bond Orbital/Natural Population Analysis/Natural Localized Molecular Orbital Programs) (Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin: Madison, WI). Available at ftp://ftp.ccl.net/pub/chemistry/software/NT/mopac6/nbo/NBO.HTM [accessed 14 October 2013].
(b) F. Weinhold, C. Landis, Valence and Bonding. A Natural Bond Orbital Donor–Acceptor Perspective 2005 (Cambridge University Press, Cambridge, UK).
[22] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWltrs%3D&md5=1a1b1d3d8a2afa59e592ed7ec920ac53CAS |
[23] (a) T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFKgtbs%3D&md5=22dae8e6312df85c4fc40525d4334b54CAS |
(b) M. J. G. Peach, T. Helgaker, P. Sałek, T. W. Keal, O. B. Lutnæs, D. J. Tozer, N. C. Handy, Phys. Chem. Chem. Phys. 2006, 8, 558.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. J. G. Peach, A. J. Cohen, D. J. Tozer, Phys. Chem. Chem. Phys. 2006, 8, 4543.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. A. Nguyen, P. N. Day, R. Pachter, J. Chem. Phys. 2011, 135, 074109.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Kobayashi, R. D. Amos, Chem. Phys. Lett. 2006, 420, 106.
| Crossref | GoogleScholarGoogle Scholar |
[24] H. Nakatsuji, SAC-CI method: theoretical aspects and some recent topics, in Computational Chemistry–Reviews of Current Trends (Ed J. Leszczyński) 1997, Vol. 2, pp. 62–124. (World Scientific: Singapore).
[25] A. Brown, C. M. Kemp, S. F. Mason, J. Chem. Soc. A 1971, 751.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. 1998, 286, 253.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 106, 5151.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFWqsbc%3D&md5=d19c2ebd0cb476c6698187ebc7b2e885CAS | 12666158PubMed |
[28] (a) O. Bastiansen, S. Samdal, J. Mol. Struct. 1985, 128, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslOksLw%3D&md5=cde8d1e6036361caa34d3e79741d6830CAS |
(b) A. Almenningen, O. Bastiansen, L. Fernholt, B. N. Cyvin, S. J. Cyvin, S. Samdal, J. Mol. Struct. 1985, 128, 59.
| Crossref | GoogleScholarGoogle Scholar |
[29] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alt7fM&md5=3f65c21bef3dce7b5735b3e0914cca9fCAS |
[30] W. Brackman, Recl Trav. Chim. Pays-Bas 1949, 68, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXjs1Ggug%3D%3D&md5=ea3ef951f264532aafe7afcd04a247c2CAS |
[31] R. L. Amey, R. H. Cole, J. Chem. Phys. 1964, 40, 146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXhtlOhsQ%3D%3D&md5=e889332402267a5f02215cf02fa95339CAS |