Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Decorating Semiconductor Silver-Tetracyanoquinodimethane Nanowires with Silver Nanoparticles from Ionic Liquids

Chuan Zhao A B , Changlong Xiao A , Hubert M. Chan A and Xunyu Lu A
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: chuan.zhao@unsw.edu.au

Australian Journal of Chemistry 67(2) 213-216 https://doi.org/10.1071/CH13393
Submitted: 25 July 2013  Accepted: 9 September 2013   Published: 25 September 2013

Abstract

Hybrid semiconducting silver-tetracyanoquinodimethane (AgTCNQ) nanowires decorated with Ag nanoparticles have been synthesized at room temperature in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Hydroquinone was applied to reduce Ag+ and TCNQ to silver nanoparticles, and TCNQ, respectively, under ambient conditions. AgTCNQ nanowires were formed via spontaneous electrolysis between Ag metal nanoparticles and TCNQ, and reaction between Ag+ and TCNQ. Microscopic, spectroscopic, and X-ray characterizations all confirmed the formation of crystalline Ag nanoparticle–AgTCNQ nanowire hybrid structures. The ionic liquid was used as a reaction medium, but also as a stabilizing (or blocking) agent to control the nucleation and growth rate of AgTCNQ wires.


References

[1]  G. Atwood, Science 2008, 321, 210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslOhsLw%3D&md5=96a9ad58e3117f1a255a169f641a1c51CAS | 18621659PubMed |

[2]  R. Bez, A. Pirovano, Mater. Sci. Semicond. Process. 2004, 7, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVelu7c%3D&md5=0c79162140d4ce78caab5898eac7d6d8CAS |

[3]  R. Müller, S. De Jonge, K. Myny, D. J. Wouters, J. Genoe, P. Heremans, Appl. Phys. Lett. 2006, 89, 223501.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, C. Adachi, Appl. Phys. Lett. 2003, 83, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOksbg%3D&md5=9407b2fdbed18aa3d8b0088ed88b91e6CAS |

[5]  H. B. Liu, Q. Zhao, Y. L. Li, Y. Liu, F. S. Lu, J. P. Zhuang, S. Wang, L. Jiang, D. B. Zhu, D. P. Yu, L. F. Chi, J. Am. Chem. Soc. 2005, 127, 1120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlGmuw%3D%3D&md5=4de1a624c8a33a04a4374b29ec8f219bCAS |

[6]  J. C. Xiao, Z. Y. Yin, Y. C. Wu, J. Guo, Y. H. Cheng, H. Li, Y. Z. Huang, Q. Zhang, J. Ma, F. Boey, H. Zhang, Q. C. Zhang, Small 2011, 7, 1242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlelu78%3D&md5=2c27e69453279be580490ba0160dc399CAS |

[7]  Y. L. Liu, Z. Y. Ji, Q. X. Tang, L. Jiang, H. X. Li, M. He, W. P. Hu, D. Q. Zhang, L. Jiang, X. K. Wang, C. Wang, Y. Q. Liu, D. B. Zhu, Adv. Mater. 2005, 17, 2953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1WmsQ%3D%3D&md5=397f9b305e8d29eab2d1b4b4440aa2efCAS |

[8]  R. Müller, J. Genoe, P. Heremans, Appl. Phys. Lett. 2006, 88, 24205.

[9]  R. Müller, S. Jonge, K. Myny, D. J. Wouters, J. Genoe, P. Heremans, Solid-State Electron. 2006, 50, 601.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. Xiao, J. Tao, Z. W. Pan, A. A. Puretzky, I. N. Ivanov, S. J. Pennycook, D. B. Geohegan, Angew. Chem. Int. Ed. 2007, 46, 2650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVWrtLc%3D&md5=0d1e8e3393ffe19a0b9a53506a19b5dbCAS |

[11]  E. I. Kamitsos, W. M. Risen, Solid State Commun. 1983, 45, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXpvFCksA%3D%3D&md5=99aeeba729f23f1da20d6f3329636893CAS |

[12]  K. Xiao, J. Tao, A. A. Puretzky, I. N. Ivanov, S. T. Retterer, S. J. Pennycook, D. B. Geohegan, Adv. Funct. Mater. 2008, 18, 3043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWnt7nE&md5=837d0095c0971ad1d7b72f3222b3d5cfCAS |

[13]  R. A. Heintz, H. H. Zhao, O. Y. Xiang, G. Grandinetti, J. Cowen, K. R. Dunbar, Inorg. Chem. 1999, 38, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFWrtLk%3D&md5=682d01216c4f7155deb043dafe694ea2CAS |

[14]  H. Wang, X. H. Qu, J. X. Lu, A. M. Bond, C. Zhao, CrystEngComm 2011, 13, 4762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWlt7s%3D&md5=9c13b0b428991a3d13528b0204ee48ceCAS |

[15]  C. Zhao, D. R. MacFarlane, A. M. Bon, J. Am. Chem. Soc. 2009, 131, 16195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Okur3P&md5=3cd37bda5e2bff1f84dbc80a9e8d9370CAS | 19831410PubMed |

[16]  C. Zhao, A. M. Bond, J. Am. Chem. Soc. 2009, 131, 4279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivF2qtLw%3D&md5=b6083f714fbc06900837047a008fc44dCAS | 19317503PubMed |

[17]  A. L. Briseno, S. C. B. Mannsfeld, E. Formo, Y. J. Xiong, X. M. Lu, Z. N. Bao, S. A. Jenekhe, Y. N. Xia, J. Mater. Chem. 2008, 18, 5395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaqs7jJ&md5=e3150e10cdefb6dda386810a616358a7CAS |

[18]  I. Jen-La Plante, S. E. Habas, B. D. Yuhas, D. J. Gargas, T. Mokari, Chem. Mater. 2009, 21, 3662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1ejtbg%3D&md5=7337f249290061630e76cd1f49c32575CAS |

[19]  D. Duonghong, E. Borgarello, M. Gratzel, J. Am. Chem. Soc. 1981, 103, 4685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXks1yltrw%3D&md5=b94a390a63b79446083a119e7aff3916CAS |

[20]  A. Pearson, A. P. O’Mullane, S. K. Bhargava, V. Bansal, Inorg. Chem. 2012, 51, 8791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagurnJ&md5=50c18375430e3789d2ef5b0ae6f1dcd7CAS | 22853734PubMed |

[21]  A. Pearson, A. P. O’Mullane, V. Bansal, S. K. Bhargava, Inorg. Chem. 2011, 50, 1705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosV2gtQ%3D%3D&md5=cbf2047a66a696438c908f8e87e645bdCAS | 21247089PubMed |

[22]  S. M. Zhang, C. L. Zhang, J. W. Zhang, Z. J. Zhang, H. X. Dang, Z. S. Wu, W. M. Liu, Acta Phys.-Chim. Sin. 2004, 20, 554.
         | 1:CAS:528:DC%2BD2cXks1Klt7Y%3D&md5=48d72db62ca08515cad48050c2292116CAS |

[23]  S. G. Liu, Y. Q. Liu, P. J. Wu, D. B. Zhu, H. Tian, K. C. Chen, Thin Solid Films 1996, 289, 300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFOitA%3D%3D&md5=ef0a86c0c1c44feacd0b850c835f7b03CAS |

[24]  D. A. Lowitz, J. Chem. Phys. 1967, 46, 4698.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXksVymu7o%3D&md5=3537287a5ebbf31ea1b54a1a48aefdf3CAS |

[25]  S. A. O’Kane, R. Clérac, H. Zhao, X. Ouyang, J. R. Galán-Mascarós, R. Heintz, K. R. Dunbar, J. Solid State Chem. 2000, 152, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFyit7g%3D&md5=2cf10104558b05c215a5fd0bd007f765CAS |

[26]  B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films 1987 (Academic Press: New York, NY).

[27]  Y. Jeon, J. Sung, C. Seo, H. Lim, H. Cheong, M. Kang, B. Moon, Y. Ouchi, D. Kim, J. Phys. Chem. B 2008, 112, 4735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslahu78%3D&md5=8f0fe337b68ad1b82aa7cb53f9cd729eCAS | 18366215PubMed |