Copper(ii) Complexes of a Tripyridyl Ligand: Anion-Dependent Metallosupramolecular Structures
James E. M. Lewis A and James D. Crowley A BA Department of Chemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand.
B Corresponding author. Email: jcrowley@chemistry.otago.ac.nz
Australian Journal of Chemistry 66(11) 1447-1454 https://doi.org/10.1071/CH13379
Submitted: 19 July 2013 Accepted: 5 August 2013 Published: 3 September 2013
Abstract
A series of copper(ii) complexes of the ligand 2,6-bis(pyridin-3-ylethynyl)pyridine have been synthesised and characterised by 1H and DOSY NMR, IR and UV-Vis spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. In solution these systems display almost identical spectroscopic properties, however the solid state structures are shown to vary widely, depending upon the choice of anion. The tetrafluoroborate salt was revealed to be a discrete Cu2L4 cage-like helicate. The tosylate salt, whilst of the same Cu2L4 stoichiometry, was shown to be a coordination polymer. Finally the nitrate salt structure was observed to be a discrete Cu2L2 metallocycle.
References
[1] (a) T. K. Ronson, S. Zarra, S. P. Black, J. R. Nitschke, Chem. Commun. 2013, 49, 2476.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyjt7o%3D&md5=72d20c9ca67d8abb7a9a553bd60b05a3CAS |
(b) M. D. Ward, P. R. Raithby, Chem. Soc. Rev. 2013, 42, 1619.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Breiner, J. K. Clegg, J. R. Nitschke, Chem. Sci. 2011, 2, 51.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. J. Wiester, P. A. Ulmann, C. A. Mirkin, Angew. Chem. Int. Ed. 2011, 50, 114.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. D. Ward, Chem. Commun. 2009, 4487.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. D. Pluth, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2009, 42, 1650.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Yoshizawa, M. Fujita, Bull. Chem. Soc. Jpn. 2010, 83, 609.
| Crossref | GoogleScholarGoogle Scholar |
(j) B. Therrien, Eur. J. Inorg. Chem. 2009, 2009, 2445.
| Crossref | GoogleScholarGoogle Scholar |
(k) S. J. Dalgarno, N. P. Power, J. L. Atwood, Coord. Chem. Rev. 2008, 252, 825.
| Crossref | GoogleScholarGoogle Scholar |
(l) C. R. K. Glasson, L. F. Lindoy, G. V. Meehan, Coord. Chem. Rev. 2008, 252, 940.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) P. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOmsb0%3D&md5=89124a143330de4aa60f28e1074c80ecCAS | 19556504PubMed |
(b) D. Fiedler, R. G. Bergman, K. N. Raymond, Angew. Chem. Int. Ed. 2006, 45, 745.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. L. Brumaghim, M. Michels, K. N. Raymond, Eur. J. Org. Chem. 2004, 2004, 4552.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Ziegler, J. L. Brumaghim, K. N. Raymond, Angew. Chem. Int. Ed. 2000, 39, 2109.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Horiuchi, T. Murase, M. Fujita, J. Am. Chem. Soc. 2011, 133, 12445.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) H. Ito, T. Kusukawa, M. Fujita, Chem. Lett. 2000, 29, 598.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. J. Yoon, J. Kuwabara, J.-H. Kim, C. A. Mirkin, Science 2010, 330, 66.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. C. Gianneschi, P. A. Bertin, S. T. Nguyen, C. A. Mirkin, L. N. Zakharov, A. L. Rheingold, J. Am. Chem. Soc. 2003, 125, 10508.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. J. Hastings, M. D. Pluth, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2010, 132, 6938.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. Yoshizawa, Y. Takeyama, T. Kusukawa, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 1347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1eruro%3D&md5=d8200f2555c0a1291596f2dfc1497e6fCAS |
(b) T. Kusukawa, T. Nakai, T. Okano, M. Fujita, Chem. Lett. 2003, 32, 284.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Yoshizawa, M. Tamura, M. Fujita, Science 2006, 312, 251.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. M. Hart-Cooper, K. N. Clary, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2012, 134, 17873.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z. J. Wang, C. J. Brown, R. G. Bergman, K. N. Raymond, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 7358.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Fiedler, R. G. Bergman, K. N. Raymond, Angew. Chem. Int. Ed. 2004, 43, 6748.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. J. Hannon, V. Moreno, M. J. Prieto, E. Moldrheim, E. Sletten, I. Meistermann, C. J. Isaac, K. J. Sanders, A. Rodger, Angew. Chem. Int. Ed. 2001, 40, 880.
| 1:CAS:528:DC%2BD3MXitFWgtbk%3D&md5=3a3717f4041552fb5e8c845c7eed611bCAS |
(b) A. Oleksi, A. G. Blanco, R. Boer, I. Usón, J. Aymamí, A. Rodger, M. J. Hannon, M. Coll, Angew. Chem. Int. Ed. 2006, 45, 1227.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. I. Pascu, A. C. G. Hotze, C. Sanchez-Cano, B. M. Kariuki, M. J. Hannon, Angew. Chem. Int. Ed. 2007, 46, 4374.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. C. G. Hotze, N. J. Hodges, R. E. Hayden, C. Sanchez-Cano, C. Paines, N. Male, M.-K. Tse, C. M. Bunce, J. K. Chipman, M. J. Hannon, Chem. Biol. 2008, 15, 1258.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. D. Richards, A. Rodger, M. J. Hannon, A. Bolhuis, Int. J. Antimicrob. Agents 2009, 33, 469.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. E. Howson, A. Bolhuis, V. Brabec, G. J. Clarkson, J. Malina, A. Rodger, P. Scott, Nat. Chem. 2011, 4, 31.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. Schilter, T. Urathamakul, J. L. Beck, M. J. Hannon, L. M. Rendina, Dalton Trans. 2010, 39, 11263.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. Kieltyka, P. Englebienne, J. Fakhoury, C. Atutexier, N. Moitessier, H. F. Sleiman, J. Am. Chem. Soc. 2008, 130, 10040.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Mounir, J. Lorenzo, M. Ferrer, M. J. Prieto, O. Rossell, F. X. Avilès, V. Moreno, J. Inorg. Biochem. 2007, 101, 660.
| Crossref | GoogleScholarGoogle Scholar |
(j) V. Vajpayee, Y. H. Song, Y. J. Jung, S. C. Kang, H. Kim, I. S. Kim, M. Wang, T. R. Cook, P. J. Stang, K.-W. Chi, Dalton Trans. 2012, 41, 3046.
| Crossref | GoogleScholarGoogle Scholar |
(k) V. Vajpayee, Y. J. Yang, S. C. Kang, H. Kim, I. S. Kim, M. Wang, P. J. Stang, K.-W. Chi, Chem. Commun. 2011, 47, 5184.
| Crossref | GoogleScholarGoogle Scholar |
(l) V. Vajpayee, Y. H. Song, Y. J. Yang, S. C. Kang, H. Kim, I. S. Kim, M. Wang, P. J. Stang, K.-W. Chi, Organometallics 2011, 30, 3242.
| Crossref | GoogleScholarGoogle Scholar |
(m) A. Mishra, S. Ravikumar, S. H. Hong, H. Kim, V. Vajpayee, H. Lee, B. Ahn, M. Wang, P. J. Stang, K.-W. Chi, Organometallics 2011, 30, 6343.
| Crossref | GoogleScholarGoogle Scholar |
(n) N. P. E. Barry, F. Edafe, B. Therrien, Dalton Trans. 2011, 40, 7172.
| Crossref | GoogleScholarGoogle Scholar |
(o) N. P. E. Barry, O. Zava, J. Furrer, P. J. Dyson, B. Therrien, Dalton Trans. 2010, 39, 5272.
| Crossref | GoogleScholarGoogle Scholar |
(p) N. P. E. Barry, O. Zava, P. J. Dyson, B. Therrien, Aust. J. Chem. 2010, 63, 1529.
| Crossref | GoogleScholarGoogle Scholar |
(q) N. P. E. Barry, F. Edafe, P. J. Dyson, B. Therrien, Dalton Trans. 2010, 39, 2816.
| Crossref | GoogleScholarGoogle Scholar |
(r) J. Mattsson, P. Govindaswamy, A. K. Renfrew, P. J. Dyson, P. Štěpnička, G. Süss-Fink, B. Therrien, Organometallics 2009, 28, 4350.
| Crossref | GoogleScholarGoogle Scholar |
(s) N. P. E. Barry, N. H. A. Karim, R. Vilar, B. Therrien, Dalton Trans. 2009, 10717.
| Crossref | GoogleScholarGoogle Scholar |
(t) B. Therrien, G. Süss-Fink, P. Govindaswamy, A. K. Renfrew, P. J. Dyson, Angew. Chem. Int. Ed. 2008, 47, 3773.
| Crossref | GoogleScholarGoogle Scholar |
(u) S. Vellas, J. Lewis, M. Shankar, A. Sagatova, J. Tyndall, B. Monk, C. Fitchett, L. Hanton, J. Crowley, Molecules 2013, 18, 6383.
| Crossref | GoogleScholarGoogle Scholar |
[6] N. B. Debata, D. Tripathy, D. K. Chand, Coord. Chem. Rev. 2012, 256, 1831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlWgtr0%3D&md5=58584218ad2bf18cc110923d97361711CAS |
[7] (a) D. Fujita, A. Takahashi, S. Sato, M. Fujita, J. Am. Chem. Soc. 2011, 133, 13317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFSmtrc%3D&md5=9b3360ce742f0a913aa8fed80c98ea29CAS | 21809891PubMed |
(b) M. Fujita, J. Yazaki, K. Ogura, Chem. Lett. 1991, 20, 1031.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. J. Lusby, P. Müller, S. J. Pike, A. M. Z. Slawin, J. Am. Chem. Soc. 2009, 131, 16398.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) Q.-F. Sun, S. Sato, M. Fujita, Nat. Chem. 2012, 4, 330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Whsb4%3D&md5=aac552a271164402f298b02d22121e3fCAS | 22437720PubMed |
(b) K. Suzuki, M. Kawano, M. Fujita, Angew. Chem. Int. Ed. 2007, 46, 2819.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. K. Chand, K. Biradha, M. Fujita, S. Sakamoto, K. Yamaguchi, Chem. Commun. 2002, 0, 2486.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. K. Chand, K. Biradha, M. Fujita, Chem. Commun. 2001, 1652.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Tominaga, K. Suzuki, T. Murase, M. Fujita, J. Am. Chem. Soc. 2005, 127, 11950.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Tominaga, K. Suzuki, M. Kawano, T. Kusukawa, T. Ozeki, S. Sakamoto, K. Yamaguchi, M. Fujita, Angew. Chem. Int. Ed. 2004, 43, 5621.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Kikuchi, S. Sato, M. Fujita, J. Am. Chem. Soc. 2010, 132, 15930.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Ikemi, T. Kikuchi, S. Matsumura, K. Shiba, S. Sato, M. Fujita, Chem. Sci. 2010, 1, 68.
| Crossref | GoogleScholarGoogle Scholar |
(i) Q.-F. Sun, T. Murase, S. Sato, M. Fujita, Angew. Chem. Int. Ed. 2011, 50, 10318.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) G. H. Clever, S. Tashiro, M. Shionoya, Angew. Chem. Int. Ed. 2009, 48, 7010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ltr3I&md5=3b131e759d9e589935eb4dd925e169b8CAS |
(b) G. H. Clever, W. Kawamura, S. Tashiro, M. Shiro, M. Shionoya, Angew. Chem. Int. Ed. 2012, 51, 2606.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Liao, B. W. Langloss, A. M. Johnson, E. R. Knudsen, F. S. Tham, R. R. Julian, R. J. Hooley, Chem. Commun. 2010, 46, 4932.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. D. Crowley, E. L. Gavey, Dalton Trans. 2010, 39, 4035.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. O. Scott, E. L. Gavey, S. J. Lind, K. C. Gordon, J. D. Crowley, Dalton Trans. 2011, 40, 12117.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Tripathy, A. K. Pal, G. S. Hanan, D. K. Chand, Dalton Trans. 2012, 41, 11273.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Freye, J. Hey, A. Torras-Galan, D. Stalke, R. Herbst-Irmer, M. John, G. H. Clever, Angew. Chem. Int. Ed. 2012, 51, 2191.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. Sekiya, M. Fukuda, R. Kuroda, J. Am. Chem. Soc. 2012, 134, 10987.
| Crossref | GoogleScholarGoogle Scholar |
(i) R. Sekiya, R. Kuroda, Chem. Commun. 2011, 47, 12346.
| Crossref | GoogleScholarGoogle Scholar |
(j) M. Fukuda, R. Sekiya, R. Kuroda, Angew. Chem. Int. Ed. 2008, 47, 706.
| Crossref | GoogleScholarGoogle Scholar |
(k) D. A. McMorran, P. J. Steel, Angew. Chem. Int. Ed. 1998, 37, 3295.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) M. B. Duriska, S. M. Neville, J. Lu, S. S. Iremonger, J. F. Boas, C. J. Kepert, S. R. Batten, Angew. Chem. 2009, 121, 9081.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. J. Barbour, G. W. Orr, J. L. Atwood, Nature 1998, 393, 671.
| Crossref | GoogleScholarGoogle Scholar |
(c) C.-Y. Su, Y.-P. Cai, C.-L. Chen, H.-X. Zhang, B.-S. Kang, Dalton Trans. 2001, 359.
(d) J.-Y. Wu, M.-S. Zhong, M.-H. Chiang, M.-R. Tsai, L.-L. Lai, Dalton Trans. 2012, 41, 156.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. Desmarets, C. Policar, L.-M. Chamoreau, H. Amouri, Eur. J. Inorg. Chem. 2009, 2009, 4396.
| Crossref | GoogleScholarGoogle Scholar |
(f) H.-K. Liu, Y. Cai, W. Luo, F. Tong, C. You, S. Lü, X. Huang, H.-Y. Ye, F. Su, X. Wang, Inorg. Chem. Commun. 2009, 12, 457.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Hirakawa, M. Yamaguchi, N. Ito, M. Miyazawa, N. Nishina, M. Kondo, R. Ikeya, S. Yasue, K. Maeda, F. Uchida, Chem. Lett. 2009, 38, 290.
| Crossref | GoogleScholarGoogle Scholar |
(h) N. Li, F. Jiang, L. Chen, X. Li, Q. Chen, M. Hong, Chem. Commun. 2011, 47, 2327.
| Crossref | GoogleScholarGoogle Scholar |
[11] N. Kishi, Z. Li, K. Yoza, M. Akita, M. Yoshizawa, J. Am. Chem. Soc. 2011, 133, 11438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFymu7w%3D&md5=ea538424ea8d1d4885a5ae76c2e181ceCAS | 21707060PubMed |
[12] (a) Z. Li, N. Kishi, K. Hasegawa, M. Akita, M. Yoshizawa, Chem. Commun. 2011, 47, 8605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVOqurg%3D&md5=a8a90205c75c029921c248c7911c7b47CAS |
(b) F. Schmitt, J. Freudenreich, N. P. E. Barry, L. Juillerat-Jeanneret, G. Süss-Fink, B. Therrien, J. Am. Chem. Soc. 2012, 134, 754.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Hiraoka, K. Harano, M. Shiro, Y. Ozawa, N. Yasuda, K. Toriumi, M. Shionoya, Angew. Chem. Int. Ed. 2006, 45, 6488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWgsrvO&md5=b96604feb348fdaba118af1e6243243cCAS |
[14] (a) J. E. M. Lewis, E. L. Gavey, S. A. Cameron, J. D. Crowley, Chem. Sci. 2012, 3, 778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOqs78%3D&md5=898f901251efaff726777db84879b67cCAS |
(b) J. E. M. Lewis, C. J. McAdam, M. G. Gardiner, J. D. Crowley, Chem. Commun. 2013, 49, 3398.
| Crossref | GoogleScholarGoogle Scholar |
[15] C. Pariya, C. R. Sparrow, C.-K. Back, G. Sandí, F. R. Fronczek, A. W. Maverick, Angew. Chem. Int. Ed. 2007, 46, 6305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVSkurY%3D&md5=067bfc3e1d6ea2f12822a16eae44fae1CAS |
[16] (a) A. W. Maverick, S. C. Buckingham, Q. Yao, J. R. Bradbury, G. G. Stanley, J. Am. Chem. Soc. 1986, 108, 7430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtFOruro%3D&md5=20d63f12088fe3b0a54e4aba910f6a01CAS |
(b) A. W. Maverick, M. L. Ivie, J. H. Waggenspack, F. R. Fronczek, Inorg. Chem. 1990, 29, 2403.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Burton, F. R. Fronczek, A. W. Maverick, Acta Crystallogr. Sect. E 2007, 63, m1977.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) J. K. Clegg, K. Gloe, M. J. Hayter, O. Kataeva, L. F. Lindoy, B. Moubaraki, J. C. McMurtrie, K. S. Murray, D. Schilter, Dalton Trans. 2006, 0, 3977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVagtbo%3D&md5=927263f67b0b51f51f6fc6a1072f9eb6CAS |
(b) J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, D. Schilter, Dalton Trans. 2005, 0, 857.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. K. Clegg, M. J. Hayter, K. A. Jolliffe, L. F. Lindoy, J. C. McMurtrie, G. V. Meehan, S. M. Neville, S. Parsons, P. A. Tasker, P. Turner, F. J. White, Dalton Trans. 2010, 39, 2804.
| Crossref | GoogleScholarGoogle Scholar |
[18] K. J. Kilpin, M. L. Gower, S. G. Telfer, G. B. Jameson, J. D. Crowley, Inorg. Chem. 2011, 50, 1123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Gquw%3D%3D&md5=694befdf0516999f1c7031e7149699ccCAS | 21207943PubMed |
[19] (a) A. S. R. Chesman, D. R. Turner, G. B. Deacon, S. R. Batten, Chem. Commun. 2010, 46, 4899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFent74%3D&md5=f03ddb50f4b8b6fe9303d96106199279CAS |
(b) D. R. Turner, S. R. Batten, Polyhedron 2010, 29, 333.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. L. Reger, A. E. Pascui, M. D. Smith, Eur. J. Inorg. Chem. 2012, 2012, 4593.
| Crossref | GoogleScholarGoogle Scholar |
(d) S.-C. Chen, J. Qin, Z.-H. Zhang, M. Hu, F.-A. Sun, L. Liu, M.-Y. He, Q. Chen, J. Coord. Chem. 2013, 66, 1924.
| Crossref | GoogleScholarGoogle Scholar |
(e) S.-i. Noro, K. Kubo, T. Nakamura, Chem. Lett. 2012, 41, 772.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) C. Desmarets, I. Azcarate, G. Gontard, H. Amouri, Eur. J. Inorg. Chem. 2011, 2011, 4558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtb7K&md5=5cd946995171945fd1e876a9c23cc786CAS |
(b) N. Schultheiss, J. M. Ellsworth, E. Bosch, C. L. Barnes, Eur. J. Inorg. Chem. 2005, 2005, 45.
| Crossref | GoogleScholarGoogle Scholar |
(c) H.-J. Kim, E. Lee, M. G. Kim, M.-C. Kim, M. Lee, E. Sim, Chem. – Eur. J. 2008, 14, 3883.
| Crossref | GoogleScholarGoogle Scholar |
(d) H.-J. Kim, J.-H. Lee, M. Lee, Angew. Chem. Int. Ed. 2005, 44, 5810.
| Crossref | GoogleScholarGoogle Scholar |
(e) H.-J. Kim, W.-C. Zin, M. Lee, J. Am. Chem. Soc. 2004, 126, 7009.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. M. Johnson, R. J. Hooley, Inorg. Chem. 2011, 50, 4671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFGntLs%3D&md5=fd7e16ee6fdd425ec9191d9164d7547eCAS | 21517029PubMed |
[22] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.
[23] A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=7ef7d36c64ac20944777b8342be85945CAS |