Fibre–Microsphere Membranes with Continuous BMP-2 Gradients with Potential Applications in Interface-tissue Engineering
Gongwen Tang A , Yunhui Zhao A and Xiaoyan Yuan A BA School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China.
B Corresponding author. Email: yuanxy@tju.edu.cn
Professor Xiaoyan Yuan has been working at Tianjin University, China, for about 25 years since she obtained her master's degree in 1988. She also obtained her bachelor's degree in 1985 and her doctorate in 1997 from Tianjin University. She worked as a research associate at the Hong Kong Polytechnic University from November 1998 to April 2001. She was promoted to Professor of Polymer Materials in 2003. Professor Yuan's research interests include biomaterials, functional materials, electrospinning, and tissue regeneration. |
Australian Journal of Chemistry 67(1) 159-167 https://doi.org/10.1071/CH13378
Submitted: 23 April 2013 Accepted: 10 November 2013 Published: 6 December 2013
Abstract
Functional gradient scaffolds play an important role in interface-tissue engineering, because of the gradual transition of both physical and chemical properties in interface tissues such as bone–cartilage, bone–ligament, and bone–tendon. In this study, a poly(l-lactide-co-glycolide) fibre–microsphere membrane with continuous-gradient bone morphogenic protein-2 (BMP-2) distribution was developed by a combined technique of electrospinning and electrospraying. The fibre–microsphere membrane had a ‘sandwich’ structure, in which the electrosprayed poly(l-lactide-co-glycolide) microspheres loaded with BMP-2 showed a gradient distribution in amount between two pieces of electrospun fibrous membranes. Proliferation of preosteoblast MC3T3-E1 cells cultured on the fibre–microsphere membrane for 21 days demonstrated a bioactivity response to the released amount of BMP-2 in a gradient mode. The study suggested that the technique of electrospinning combined with electrospraying is an effective way to prepare functional gradient membranes with potential applications in bone–interface tissue regeneration.
References
[1] A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, A. Khademhosseini, Acta Biomater. 2011, 7, 1441.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFaiurw%3D&md5=2a7f38e0755c696fd9f22b960d6389a8CAS | 21232635PubMed |
[2] P. J. Yang, J. S. Temenoff, Tissue Eng. Pt. B 2009, 15, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlCqtrs%3D&md5=87cd0b5ab0c0ece7725168960663441cCAS |
[3] X. Wang, E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, D. L. Kaplan, J. Control. Release 2009, 134, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVGgsbs%3D&md5=56a36f632f98c31d3035976f85b02b7aCAS | 19071168PubMed |
[4] N. H. Dormer, M. Singh, L. Wang, C. J. Berkland, M. S. Detamore, Ann. Biomed. Eng. 2010, 38, 2167.
| Crossref | GoogleScholarGoogle Scholar | 20379780PubMed |
[5] N. Mohan, N. H. Dormer, K. L. Caldwell, V. H. Key, C. J. Berkland, M. S. Detamore, Tissue Eng. Pt. A 2011, 17, 2845.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqtLnP&md5=546dfb1da1d210d8a3a1a1aeb1b38f55CAS |
[6] J. M. Wozney, Spine 2002, 27, S2.
| Crossref | GoogleScholarGoogle Scholar | 12205411PubMed |
[7] A. T. Raiche, D. A. Puleo, J. Biomed. Mater. Res. A 2004, 69A, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVGqt7w%3D&md5=9d93bcd716d9ad6a8bf9e72f2e7d26e2CAS |
[8] S. Spinella-Jaegle, S. Roman-Roman, C. Faucheu, F. W. Dunn, S. Kawai, S. Galléa, V. Stiot, A. M. Blanchet, B. Courtois, R. Baron, G. Rawadi, Bone 2001, 29, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVSlsLg%3D&md5=79590bdb18f2ca1e3f9f1d53090e0238CAS | 11595614PubMed |
[9] H. Sun, K. Feng, J. Hu, S. Soker, A. Atala, P. X. Ma, Biomaterials 2010, 31, 1133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SltL7J&md5=b39b258f39dab235d5afab6134cc9388CAS | 19857889PubMed |
[10] C. Erisken, D. M. Kalyon, H. Wang, Biomaterials 2008, 29, 4065.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaisL3P&md5=6800ba5e1b193edca84ad6bc0940bddeCAS | 18649939PubMed |
[11] S. Samavedi, C. O. Horton, S. A. Guelcher, A. S. Goldstein, A. R. Whittington, Acta Biomater. 2011, 7, 4131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSkt77P&md5=57ff9e040096ce8867765373cb0ce06cCAS | 21791254PubMed |
[12] X. Zhang, X. Gao, L. Jiang, J. Qin, Langmuir 2012, 28, 10026.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Wqtbg%3D&md5=120a7452d11a658258067d2a2cf04694CAS | 22607039PubMed |
[13] J. Xie, W. J. Ng, L. Y. Lee, C.-H. Wang, J. Colloid Interface Sci. 2008, 317, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlChurfK&md5=c014ce1df2c9327d5d1eda3b248dde2fCAS | 17945246PubMed |
[14] Y. Wu, J. A. MacKay, J. R. McDaniel, A. Chilkoti, R. L. Clark, Biomacromolecules 2009, 10, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyksrfP&md5=e2fc2ab959db7f3e21db29b08d53455eCAS | 19072041PubMed |
[15] D. H. Choi, C. H. Park, I. H. Kim, H. J. Chun, K. Park, D. K. Han, J. Control. Release 2010, 147, 193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SnsrjN&md5=22a8cb7e17e0e24745bdbcbb64c4c493CAS | 20647022PubMed |
[16] B. Almería, T. M. Fahmy, A. Gomez, J. Control. Release 2011, 154, 203.
| Crossref | GoogleScholarGoogle Scholar | 21640147PubMed |
[17] Y. Xu, M. A. Hanna, Int. J. Pharm. 2006, 320, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFCqtbk%3D&md5=ee953c24e967972c6244166a80d56234CAS | 16697538PubMed |
[18] X. Li, M. R. MacEwan, J. Xie, D. Siewe, X. Yuan, Y. Xia, Adv. Funct. Mater. 2010, 20, 1632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVGktLw%3D&md5=adbafd15e7a41789df838c4b594c669aCAS | 21687818PubMed |
[19] G. W. Tang, Y. H. Zhao, Y. X. Yuan, Chin. Sci. Bull. 2013, 58, 3415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCit7jJ&md5=da27e0abaa4d383f45073e7b79af4856CAS |
[20] G. W. Tang, H. Zhang, Y. H. Zhao, Y. Zhang, X. L. Li, X. Y. Yuan, J. Biomater. Sci. Polym. Ed. 2012, 23, 2241.
| 1:CAS:528:DC%2BC38Xhtlyru7jP&md5=69a9816e72d317db47e85433f08026b6CAS |
[21] T. J. Sill, H. A. von Recum, Biomaterials 2008, 29, 1989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKntrw%3D&md5=cbfaa2a88fb74f5bcfdce7c932179b37CAS | 18281090PubMed |
[22] H. S. Yoo, T. G. Kim, T. G. Park, Adv. Drug Deliv. Rev. 2009, 61, 1033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqtr%2FL&md5=e0a653160e2344532e12d0a839eb35c9CAS | 19643152PubMed |
[23] Y. Xu, M. A. Hanna, Int. J. Pharm. 2006, 320, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFCqtbk%3D&md5=ee953c24e967972c6244166a80d56234CAS | 16697538PubMed |
[24] S. T. Yohe, V. L. M. Herrera, Y. L. Colson, M. W. Grinstaff, J. Control. Release 2012, 162, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFClsLfF&md5=5e1255a948f0c442b856b4ab786a978dCAS | 22684120PubMed |
[25] S. E. Kim, S. H. Song, Y. P. Yun, B. J. Choi, I. K. Kwon, M. S. Bae, H. J. Moon, Y. D. Kwon, Biomaterials 2011, 32, 366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmsL7F&md5=740d3399401b95af621197b4936eb35aCAS | 20880582PubMed |
[26] Y. J. Park, K. H. Kim, J. Y. Lee, Y. Ku, S. J. Lee, B. M. Min, C. P. Chung, Biotechnol. Appl. Biochem. 2006, 43, 129.
| Crossref | GoogleScholarGoogle Scholar |
[27] N. Jaiswal, S. E. Haynesworth, A. I. Caplan, S. P. Bruder, J. Cell. Biochem. 1997, 64, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpt1Kqsw%3D%3D&md5=bed5942691cfdec12d4fa51f1d98caaaCAS | 9027589PubMed |
[28] E. J. Chung, K. B. Chien, B. A. Aguado, R. N. Shah, Tissue Eng. Pt. A 2013,
| Crossref | GoogleScholarGoogle Scholar |