Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Unusual Fluorescence Quenching of Coumarin 314 by β-Cyclodextrin and the Effect of β-Cyclodextrin on its Binding with Calf Thymus DNA

Chandrasekaran Sowrirajan A , Sameena Yousuf A and Israel V. M. V. Enoch A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Karunya University, Coimbatore 641 114, Tamil Nadu, India.

B Corresponding author. Email: drisraelenoch@gmail.com

Australian Journal of Chemistry 67(2) 256-265 https://doi.org/10.1071/CH13364
Submitted: 11 July 2013  Accepted: 25 September 2013   Published: 17 October 2013

Abstract

This paper discusses the binding of a laser dye, Coumarin 314 with β-cyclodextrin, studied mainly by UV-visible spectroscopy, 2D rotating-frame nuclear Overhauser effect spectroscopy (ROESY), steady-state spectroscopy and time-resolved fluorescence spectroscopy. The role of β-cyclodextrin on the binding of Coumarin 314 with calf thymus DNA was investigated. Coumarin 314 shows a hyperchromic shift of absorption and a quenching of fluorescence due to binding with β-cyclodextrin. The fluorescence quenching is non-linear and the reason for the non-linearity is discussed. The unusual fluorescence quenching on Coumarin 314–β-cyclodextrin binding is rationalised from the effect of acidity on absorption, fluorescence, and molecular modelling studies. Additional proof for the mode of binding is given by 2D ROESY. The capped and exposed portions of the Coumarin 314 molecule in the Coumarin 314–β-cyclodextrin complex when binding with calf thymus DNA were visualised based on spectral and molecular modelling studies.


References

[1]  D. C. Hooper, J. S. Wolfson, G. L. McHugh, M. B. Winters, M. N. Swartz, Antimicrob. Agents Chemother. 1982, 22, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtVCisLY%3D&md5=67454a49d81d83f2321aa177a8458d99CAS | 6295263PubMed |

[2]  N. A. Nemkovich, H. Reis, W. Baumann, J. Lumin. 1997, 71, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlWmtrk%3D&md5=76b2946c4b249c8a412160c47fa16aeeCAS |

[3]  J. M. Domagala, S. E. Hagen, E. T. Lunney, D. Bradly, Warner Lambert Co., US Patent 5510375, 1996, A23.

[4]  A. I. Eid, F. A. Ragab, S. L. El-Ansary, S. M. El-Gazayerly, F. E. Mourad, Arch. Pharm. 1994, 327, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlGntLk%3D&md5=1243fb7b96c2f161e4b15c8a67f08321CAS |

[5]  B.-C. Yip, H.-K. Fun, K. Sivakumar, Z.-Y. Zhou, O. B. Shawkataly, S.-G. Teoh, Acta Crystallogr. C 1995, 51, 956.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  T. Honda, I. Fujii, N. Hirayama, N. Aoyama, A. Miike, Acta Crystallogr. C 1996, 52, 395.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  D.-W. Choi, C.-W. Lim, S.-H. Sohn, Optik 2003, 114, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1ynsg%3D%3D&md5=290904bbc196d88888c85a8cd69689b7CAS |

[8]  K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, A. van Dijken, J. Phys. Chem. B 2002, 106, 6834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVKntrY%3D&md5=469a9696c18ee6c950ed88ce06812c9eCAS |

[9]  P. Haring Bolivar, C. Wegmann, R. Kersting, M. Deussen, U. Lemmer, R. F. Mahrt, H. Bässler, E. O. Göbel, H. Kurz, Chem. Phys. Lett. 1995, 245, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlCnt7Y%3D&md5=aa565a77ccff62d92408337987875702CAS |

[10]  E. A. McArthur, K. B. Eisenthal, J. Am. Chem. Soc. 2006, 128, 1068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitV2nuw%3D%3D&md5=5dee46c25ff1abf1fe0ee59ef06d279fCAS | 16433510PubMed |

[11]  Y. Rao, M. Xu, S. Jockusch, N. J. Turro, K. B. Eisenthal, Chem. Phys. Lett. 2012, 544, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOkt7bO&md5=95d60663d8f44b6f6493c8a8759731f0CAS |

[12]  X. Shang, K. Nguyen, Y. Rao, K. B. Eisenthal, J. Phys. Chem. C 2008, 112, 20375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKisLvF&md5=afc62a6b9353bf8859f53a709af4c2d3CAS |

[13]  J. A. Organero, L. Tormo, M. Sanz, A. Roshal, A. Douhal, J. Photochem. Photobiol. Chem. 2007, 188, 74.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Cmurc%3D&md5=4c5bc42fa2777a9261c89bc366ab1677CAS |

[14]  A. Wu, Q. Chen, K. Xia, T. Hou, X. Shen, H. Gao, X. Xu, J. Photochem. Photobiol. Chem. 2006, 182, 174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Kksrg%3D&md5=e20742aa832414ea39dc1561815225d8CAS |

[15]  A. Wu, X. Shen, H. Gao, J. Photochem. Photobiol. Chem. 2007, 185, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFeh&md5=75cd594cf28ea4f8537724718dac98a1CAS |

[16]  I. V. M. V. Enoch, S. Yousuf, J. Solution Chem. 2013, 42, 470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWmtro%3D&md5=9367703cb558ee50f79e8c55b3d87924CAS |

[17]  I. V. M. V. Enoch, M. Swaminathan, J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlOjtrk%3D&md5=0de3a1f4c5c1b890117029ccda84fe46CAS |

[18]  I. V. M. V. Enoch, M. Swaminathan, J. Lumin. 2007, 127, 713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFyksbY%3D&md5=48a85bec38b7b6e75b8a43c728577cfcCAS |

[19]  S. Agarwal, D. K. Jangir, R. Mehrotra, J. Photochem. Photobiol. B 2013, 120, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Sns78%3D&md5=7a8c486191fd7b15ea45b2e288934413CAS | 23266050PubMed |

[20]  G. Zhang, X. Hu, P. Fu, J. Photochem. Photobiol. B 2012, 108, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCnt7s%3D&md5=d3cae5d3eed112087d4656fa514b52d1CAS | 22245468PubMed |

[21]  A. Wenting, G. Xiliang, S. Shaomin, D. Chuan, J. Photochem. Photobiol. Chem. 2005, 173, 36.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  I. V. M. V. Enoch, M. Swaminathan, J. Fluoresc. 2006, 16, 501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFShtLs%3D&md5=9aaa897f755a3465f3b4b2056b19818bCAS |

[23]  S. Yousuf, I. V. M. V. Enoch, AAPS PharmSciTech 2013, 14, 770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFyis74%3D&md5=488666c5b287595c569eb95ee2a86c10CAS | 23625651PubMed |

[24]  Y. Lu, G.-K. Wang, J. Lv, G.-S. Zhang, Q.-F. Liu, J. Fluoresc. 2011, 21, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlehs78%3D&md5=29672e47b7e608337cdc499dd6037560CAS | 20953826PubMed |

[25]  H. J. Bernstein, RasMol 2.7.5.2 2011. Molecular graphics visualisation tool based on RasMol 2.6 by Roger Sayle, Biomolecular Structures Group, Glaxo Welcome Research & Development, Stevenage, Hertfordshire, UK.

[26]  J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn 2000 (Springer: Singapore).

[27]  A. A. Ensafi, R. Hajian, S. Ebrahimi, J. Braz. Chem. Soc. 2009, 20, 266.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVyqtrw%3D&md5=39fc0fd5ee7903a74c1db315fae4b2e8CAS |

[28]  J. K. Barton, J. M. Goldberg, C. V. Kumar, N. J. Turro, J. Am. Chem. Soc. 1986, 108, 2081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVGjs7w%3D&md5=affedb9d4dc22e74fbf96f0c253302b5CAS |