Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Biomedical Applications of Clay

Wojciech Chrzanowski A E , Sally Yunsun Kim A and Ensanya Ali Abou Neel B C D
+ Author Affiliations
- Author Affiliations

A Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.

B Division of Biomaterials, Conservative Dental Sciences Department, King Abdulaziz University, Jeddah 22254, Saudi Arabia.

C Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta 31111, Egypt.

D Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, UK.

E Corresponding author. Email: wchrzanowski@sydney.edu.au




A/Prof. Ensanya A. Abou Neel is currently an assistant professor at the Faculty of Dentistry, King Abdulaziz University, Saudi Arabia. Her scientific interests centre on novel bioactive glasses, biomimetic/synthetic polymers, and degradable/non-degradable composite materials for biomedical and tissue engineering applications.



Ms Sally Kim received her Bachelor of Pharmacy from the University of Sydney and is a registered pharmacist. She is pursuing her Master of Philosophy (Pharmacy) degree and her research is focused on the development of new classes of bio-inspired, multifunctional drug-carriers for pulmonary delivery of drugs using natural materials such as clay, silk, and keratin.



Dr Wojciech Chrzanowski is currently a lecturer at the University of Sydney. His research centres around biointerfaces and nanomedicine. His work involves developing drug delivery systems composed of natural materials such as lipids, clay, and silk. An important feature of these systems is their multifunctionality that allows controlled drug delivery (also externally activated) and supports biological processes such as tissue regeneration.

Australian Journal of Chemistry 66(11) 1315-1322 https://doi.org/10.1071/CH13361
Submitted: 9 July 2013  Accepted: 19 August 2013   Published: 23 September 2013

Abstract

Traditional applications of clay mineral mainly revolved around cosmetics and industrial products, but their scope of application is continuously expanding into pharmaceutics including drug delivery and tissue engineering. The interest in clays amongst the scientific community has increased dramatically in recent years due to its composition and structure which can be easily modified to serve different purposes. Largely due to structural flexibility and its small particle size, clay nanostructure can be modified to tune rheological and mechanical properties, and can entrap moisture to suit a particular application. Additionally, interest in the synthesis of polymer-clay nanocomposites in tissue engineering is growing as it is cheap, easily available, and environmentally-friendly. The structure of clay allows the interclaysion of different biomolecules between the clay layers. These biomolecules can be released in a controlled manner which can be utilised in drug delivery and cosmetic applications.


References

[1]  A. Panwar, V. Choudhary, D. K. Sharma, J. Reinf. Plast. Comp. 2011, 30, 446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1eqt7w%3D&md5=d0f01b949b2f41397f09ca8839157a43CAS |

[2]  E. A. Abou Neel, W. Chrzanowski, D. M. Pickup, L. A. O’Dell, N. J. Mordan, R. J. Newport, M. E. Smith, J. C. Knowles, J. R. Soc., Interface 2009, 6, 435.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  E. A. Abou Neel, W. Chrzanowski, J. C. Knowles, Acta Biomater. 2008, 4, 523.
         | Crossref | GoogleScholarGoogle Scholar | 18249043PubMed |

[4]  E. A. Abou Neel, W. Chrzanowski, S. P. Valappil, L. A. O’Dell, D. M. Pickup, M. E. Smith, R. J. Newport, J. C. Knowles, J. Non-Cryst. Solids 2009, 355, 991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlKnt7o%3D&md5=0695a379b506258f48a780074f91861fCAS |

[5]  W. Chrzanowski, E. A. Abou Neel, K.-Y. Lee, A. Bismarck, A. M. Young, A. D. Hart, M. J. Dalby, J. C. Knowles, Adv. Eng. Mater. 2010, 12, B298.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  W. Chrzanowski, A. Khademhosseini, Adv. Drug Deliv. Rev. 2013, 65, 403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFChu7o%3D&md5=b55bd268d6615b05d0f4a854f9e3dfa7CAS | 23500192PubMed |

[7]  Rockwood Additives Limited, Consumer Care, Additives for Home Care and Personal Care Products 2007 (Rockwood Additives Limited: Widnes, Cheshire, UK).

[8]  Rockwood Additives Limited, Laponite Additives (Synthetic Silicate Additives): Why Laponite Addtives? Available at http://www.rockwoodadditives.com/laponite/index.asp (accessed 5 May 2012).

[9]  T. B. Murphy, A. J. Sawyer, Advancement of Natural and Synthetic Clays in Personal Care Applications 2004, Business Briefing, Global Cosmetics Manufacturing.

[10]  R. C. Mackenzie, B. D. Mitchell, Earth Sci. Rev. 1966, 2, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xks1Cms7c%3D&md5=f57cb0c474c60ffc9fbaa822bd261454CAS |

[11]  C. Viseras, P. Cerezo, R. Sanchez, I. Salcedo, C. Aguzzi, Appl. Clay Sci. 2010, 48, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFWmurc%3D&md5=5edc019db63c623809d4301f2123633aCAS |

[12]  C. Aguzzi, P. Cerezo, C. Viseras, C. Caramella, Appl. Clay Sci. 2007, 36, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFGgs7o%3D&md5=fbc752ec2e768ffb51bb02c5b5212dd4CAS |

[13]  S. R. Raghvendra, International Journal of Pharma World Research 2012, 3, 15.

[14]  W. B. Jepson, J. B. Rows, Clays Clay Miner. 1975, 23, 310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XptlSitg%3D%3D&md5=c397593f0d8090b77c5f0c208f4b3f60CAS |

[15]  C. Bertagnolli, S. J. Kleinübing, M. G. C. da Silva, Appl. Clay Sci. 2011, 53, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlagu74%3D&md5=58443e79ef0ccde774183ce2494c7c5fCAS |

[16]  R. E. White, Principles and Practice of Soil Science: The Soil as a Natural Resource 2005 (Wiley-Blackwell: Chichester).

[17]  H. Jung, H.-M. Kim, Y. B. Choy, S.-J. Hwang, J.-H. Choy, Appl. Clay Sci. 2008, 40, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsF2jsLk%3D&md5=065d86bb07caee01b6fde64c1118eceaCAS |

[18]  J. K. Park, Y. B. Choy, J. M. Oh, J. Y. Kim, S.-J. Hwang, J.-H. Choy, Int. J. Pharm. 2008, 359, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemsr8%3D&md5=4f7e78f702e529624ac2c04e913baa31CAS | 18502063PubMed |

[19]  M. Baek, J.-H. Choy, S.-J. Choi, Int. J. Pharm. 2012, 425, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSgsb4%3D&md5=69a34615acb14ade2d0c17eae7bc7d53CAS | 22266539PubMed |

[20]  G. V. Joshi, B. D. Kevadiya, H. A. Patel, H. C. Bajaj, R. V. Jasra, Int. J. Pharm. 2009, 374, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFGltL0%3D&md5=0e7186f757466225e9f48f4785bd660cCAS | 19446759PubMed |

[21]  W.-F. Lee, Y.-T. Fu, J. Appl. Polym. Sci. 2003, 89, 3652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVajs7s%3D&md5=1d3f134e9e60fa463a8d5881b72a1a4dCAS |

[22]  M. Sanchez Camazano, M. J. Sanchez, M. T. Vicente, A. Dominguez-Gil, J. Pharm. Sci. 1980, 69, 1142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXptVWgsg%3D%3D&md5=d6a21f0f5d17f7e1dbc457335ee8bf9bCAS | 7420278PubMed |

[23]  F. Salles, J. M. Douillard, O. Bildstein, C. Gaudin, B. Prelot, J. Zajac, H. V. Damme, J. Colloid Interface Sci. 2013, 395, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlakuro%3D&md5=65520494c195acf0dd853d93ab2cf808CAS | 23352873PubMed |

[24]  J. W. McGinity, J. L. Lach, J. Pharm. Sci. 1976, 65, 896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktlOitbs%3D&md5=2801e7f92f6983aa9004ca491f6a943cCAS | 932977PubMed |

[25]  S. Lavie, G. Stotzky, Appl. Environ. Microbiol. 1986, 51, 65.
         | 1:CAS:528:DyaL28XosFaksQ%3D%3D&md5=6a67dd795d84d37c20e23fd5bf71df45CAS | 3954340PubMed |

[26]  M. Dogan, A. U. Dogan, A. Aburub, A. Botha, D. E. Wurster, Microsc. Microanal. 2012, 18, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpsl2jtw%3D%3D&md5=20cd899a6132f9183bf0d9e7ef54ed2bCAS | 22258723PubMed |

[27]  S. Sinha Ray, M. Okamoto, Prog. Polym. Sci. 2003, 28, 1539.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  L. de Sousa Rodrigues, A. Figueiras, F. Veiga, R. M. de Freitas, L. C. C. Nunes, E. C. da Silva Filho, C. M. da Silva Leite, Colloid. Surface B 2013, 103, 642.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. López-Galindo, C. Viseras, P. Cerezo, Appl. Clay Sci. 2007, 36, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. P. Zheng, L. Luan, H. Y. Wang, L. F. Xi, K. D. Yao, Appl. Clay Sci. 2007, 36, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslentrg%3D&md5=430c2ce89ef14a0b0ae1c1fbcc63114dCAS |

[31]  M. S. Camazano, M. J. Sanchez, M. T. Vicente, A. Dominguez-Gil, Int. J. Pharm. 1980, 6, 243.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. Valappil, D. Ready, E. Abou Neel, D. Pickup, L. O’Dell, W. Chrzanowski, J. Pratten, R. J. Newport, M. E. Smith, M. Wilson, J. C. Knowles, Acta Biomater. 2009, 5, 1198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1aiur4%3D&md5=59b31f8a5e32cec43b910ef52b75b15bCAS | 18974026PubMed |

[33]  S. P. Valappil, D. Ready, E. A. Abou Neel, D. M. Pickup, W. Chrzanowski, L. A. O’Dell, R. J. Newport, M. E. Smith, M. Wilson, J. C. Knowles, Adv. Funct. Mater. 2008, 18, 732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGisL4%3D&md5=63834d375ede3e1b37db615f8bcb7d16CAS |

[34]  B. D. Kevadiya, T. A. Patel, D. D. Jhala, R. P. Thumbar, H. Brahmbhatt, M. P. Pandya, S. Rajkumar, P. K. Jena, G. V. Joshi, P. K. Gadhia, C. B. Tripathi, H. C. Bajaj, Eur. J. Pharm. Biopharm. 2012, 81, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1CrsLs%3D&md5=7b315c16b12f09c6d41a76d2e63891fcCAS | 22269936PubMed |

[35]  Y. Li, D. Maciel, H. Tomas, J. Rodrigues, H. Ma, X. Shi, Soft Matter 2011, 7, 6231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslOksLw%3D&md5=df9959263e4458dbe3e8d9c85f1c98ffCAS |

[36]  J. I. Dawson, E. Kingham, N. R. Evans, E. Tayton, R. O. Oreffo, Inflammation Regener. 2012, 32, 072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1SqsbzM&md5=bc74c1d9d7cdd07ee61cefc3d3a459b7CAS |

[37]  J. I. Dawson, J. M. Kanczler, X. B. Yang, G. S. Attard, R. O. Oreffo, Adv. Mater. 2011, 23, 3304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlWhsLk%3D&md5=4947697851c779c994f12062e329b8e5CAS | 21661063PubMed |

[38]  K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFSqu7w%3D&md5=12f29a546c21a4d38b5b2454f25a956dCAS | 11710233PubMed |

[39]  I. Frisman, D. Seliktar, H. Bianco-Peled, Acta Biomater. 2012, 8, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjtLzL&md5=111fc55be0d4da90ad5054a92b768e15CAS | 21855662PubMed |

[40]  S. Wang, F. Taraballi, L. P. Tan, K. W. Ng, Cell Tissue Res. 2012, 347, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xktlejur8%3D&md5=c0a5b985e554a8a0cc73e9775fa2891eCAS | 22287039PubMed |

[41]  A. M. Kloxin, C. J. Kloxin, C. N. Bowman, K. S. Anseth, Adv. Mater. 2010, 22, 3484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSisLzO&md5=628ebaca8d4eb2b81a8a42bb06068d3eCAS | 20473984PubMed |

[42]  A. D. Augst, H. J. Kong, D. J. Mooney, Macromol. Biosci. 2006, 6, 623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWhu78%3D&md5=5a947dc969668c1c3374f2446ec05cdbCAS | 16881042PubMed |

[43]  C.-W. Chang, A. van Spreeuwel, C. Zhang, S. Varghese, Soft Matter 2010, 6, 5157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cmu7fN&md5=3a46d92c828af54927b73b590d473c3cCAS |

[44]  I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J. M. Kenny, Polym. Degrad. Stabil. 2010, 95, 2126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kqs77E&md5=9e495c0d8702897abf229439c62daa26CAS |

[45]  K. S. Katti, D. R. Katti, R. Dash, Biomed. Mater. 2008, 3, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  A. H. Ambre, K. S. Katti, D. R. Katti, J. Nanotechnol. Eng. Med. 2010, 1, 031013.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  G. Ozkoc, S. Kemaloglu, M. Quaedflieg, Polym. Composite. 2010, 31, 674.
         | 1:CAS:528:DC%2BC3cXjt1eqt74%3D&md5=1cb2110aa98146e901b11a41383bdf6bCAS |

[48]  B. Ruzicka, E. Zaccarelli, Soft Matter 2011, 7, 1268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOmur0%3D&md5=18470daad9e30c276d9a2f3bdcb0b49aCAS |

[49]  T. Pongjanyakul, T. Rongthong, Carbohydr. Polym. 2010, 81, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCitrY%3D&md5=01af9a77cf72e2d73508f13509a086a2CAS |

[50]  C.-J. Wu, A. K. Gaharwar, P. J. Schexnailder, G. Schmidt, Materials 2010, 3, 2986.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtF2nsbo%3D&md5=627e58016639dada80bb9ebbdaf045b7CAS |

[51]  A. K. Gaharwar, P. J. Schexnailder, B. P. Kline, G. Schmidt, Acta Biomater. 2011, 7, 568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyrtg%3D%3D&md5=c26edd047c9398249e59e022580e89eaCAS | 20854941PubMed |