On-Water Reactivity and Regioselectivity of Quinones in C–N Coupling with Amines: Experimental and Theoretical Study
Maximiliano Martínez-Cifuentes A C , Graciela Clavijo-Allancan A , Carolina Di Vaggio-Conejeros A , Boris Weiss-López B and Ramiro Araya-Maturana A CA Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile.
B Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
C Corresponding authors. Email: mmartinez@ug.uchile.cl; raraya@ciq.uchile.cl
Australian Journal of Chemistry 67(2) 217-224 https://doi.org/10.1071/CH13355
Submitted: 6 July 2013 Accepted: 10 September 2013 Published: 11 October 2013
Abstract
A study about the oxidative coupling of some representative carbo- and heterocyclic non-symmetrical quinones with aryl- and alkylamines, was carried out comparing dichloromethane and water as reaction mediums. We found that the on-water reactions gave better or, at worst, the same results as a conventional organic medium like dichloromethane. Descriptors derived from conceptual density functional theory and approaches of electrostatic nature, such as the molecular electrostatic potential, were used to explain the observed chemical reactivity and regioselectivity. Further, the on-water conditions were used to obtain 24 new aminoquinones with potential biological activity.
References
[1] P. R. Dandawate, A. C. Vyas, S. B. Padhye, M. W. Singh, J. B. Baruah, Mini Rev. Med. Chem. 2010, 10, 436.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFCntb8%3D&md5=9ca8f457be283808a2a071b689677a04CAS | 20370705PubMed |
[2] M. M. M. Santos, N. Faria, J. Iley, S. J. Coles, M. B. Hursthouse, M. L. Martins, R. Moreira, Bioorg. Med. Chem. Lett. 2010, 20, 193.
| Crossref | GoogleScholarGoogle Scholar |
[3] L. Mendoza, R. Araya-Maturana, W. Cardona, T. Delgado-Castro, C. García, C. Lagos, M. Cotoras, J. Agric. Food Chem. 2005, 53, 10080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gju73O&md5=1548e1eba309ceffb26e4c8a7d87ae71CAS | 16366698PubMed |
[4] E. N. da Silva, R. F. S. Menna-Barreto, M. C. F. R. Pinto, R. S. F. Silva, D. V. Teixeira, M. C. B. V. de Souza, C. A. De Simone, S. L. De Castro, V. F. Ferreira, A. V. Pinto, Eur. J. Med. Chem. 2008, 43, 1774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlOlsrY%3D&md5=8b333f94ee3185f53b3110d6c17a7282CAS | 18045742PubMed |
[5] E. S. B. Ferreira, A. N. Hulme, H. McNab, A. Quye, Chem. Soc. Rev. 2004, 33, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVWgtbc%3D&md5=7edc723f662e22bff8690b451783efefCAS |
[6] F. J. Cervantes, T. Duong-Dag, A. D. L. Akkermans, G. Lettinga, J. A. Field, Water Sci. Technol. 2003, 48, 9.
| 1:CAS:528:DC%2BD3sXpvFemsrg%3D&md5=039405759f2889d89e489ff1321ec22fCAS | 14640194PubMed |
[7] M. Arshadi, M. Ghiaci, Appl. Catal. A Gen. 2011, 399, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVOqu7Y%3D&md5=3bb3b74d0068de412a845ea9002fb904CAS |
[8] S. Omura, A. Nakagawa, H. Yamada, T. Hata, A. Furusaki, T. Watanabe, Chem. Pharm. Bull. (Tokyo) 1973, 21, 931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkslyms78%3D&md5=3909fe44de4b42ab5b02c81f846ffa40CAS | 4727361PubMed |
[9] D. J. Milanowski, K. R. Gustafson, J. A. Kelley, J. B. McMahon, J. Nat. Prod. 2004, 67, 70.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVak&md5=94d9e4926f63ebd0ca11f9c184acfc0fCAS | 14738389PubMed |
[10] Y. J. Zhang, M. Kong, R. Y. Chen, D. Q. Yu, J. Nat. Prod. 1999, 62, 1050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFGhurY%3D&md5=d54d9a55cff2a543b2da168b25b800b4CAS | 10425141PubMed |
[11] N. K. Utkina, V. A. Denisenko, O. V. Scholokova, M. V. Virovaya, N. G. Prokofèva, Tetrahedron Lett. 2003, 44, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVensrY%3D&md5=f808a68e88685122990a36a0790f2b1aCAS |
[12] Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka, T. Yakura, J. Am. Chem. Soc. 1992, 114, 2175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht12gt7w%3D&md5=a903436c6a4a09e270f814587ca8463aCAS |
[13] C.-P. Chuang, A.-I. Tsai, Tetrahedron 2007, 63, 11911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1SmtrnK&md5=3234f02ab33846385d9fd508ed1a3108CAS |
[14] (a) J. W. Macleod, R. H. Thomson, J. Org. Chem. 1960, 25, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXotVGguw%3D%3D&md5=0308583991ad13589e4de9ca4ec8a1e0CAS |
(b) C. A. Panetta, P. W. J. Fan, R. Fattah, J. C. Greever, Z. L. He, C. L. Hussey, D. Z. Sha, L. D. Wescott, J. Org. Chem. 1999, 64, 2919.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. K. Machocho, T. Win, S. Grinberg, S. Bittner, Tetrahedron Lett. 2003, 44, 5531.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) Y. T. J. Pratt, J. Org. Chem. 1962, 27, 3905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjt1ah&md5=760c2469ce6de6ded1099dcf7d118a2fCAS |
(b) M. Aguilar-Martinez, G. Cuevas, M. Jimenez-Estrada, I. Gonzalez, B. Lotina-Hennsen, N. Macias-Ruvalcaba, J. Org. Chem. 1999, 64, 3684.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. S. Lisboa, V. G. Santos, B. G. Vaz, N. C. de Lucas, M. N. Eberlin, S. J. Garde, J. Org. Chem. 2011, 76, 5264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1ansrc%3D&md5=b71369f33d45e9d87372c470b5d9eabaCAS |
[17] C. H. Jiang, S. Z. Wang, Synlett 2009, 1099.
| 1:CAS:528:DC%2BD1MXmtF2msLk%3D&md5=ed45de9978cec72e3c3d24baede66af1CAS |
[18] P. Tundo, A. Perosa, F. Zecchini, Methods and Reagents for Green Chemistry: An Introduction 2007 (Wiley-VCH: Weinhein).
[19] J. S. Yadav, B. V. S. Reddy, T. Swamy, K. S. Shankar, Monatsh. Chem. 2008, 139, 1317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlais7fK&md5=579ed73ce6f1add13ab63a5e36b66674CAS |
[20] P. Norcott, C. Spielman, C. S. P. McErlean, Green Chem. 2012, 14, 605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFymsbY%3D&md5=83d24a32142e8b5560e39e9082006a1eCAS |
[21] (a) N. Azizi, M. S. Saidi, Org. Lett. 2005, 7, 3649.
| 1:CAS:528:DC%2BD2MXmsFGgtbg%3D&md5=3a3e52c0deed093e03ad21a1482de61dCAS | 16092841PubMed |
(b) N. Azizi, F. Aryanasab, L. Torkiyan, A. Ziyaei, M. R. Saidi, J. Org. Chem. 2006, 71, 3634.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) G. L. Khatik, R. Kumar, A. K. Chakraborti, Org. Lett. 2006, 8, 2433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Ogsbc%3D&md5=7e37a97572cf630f9374fc8cd32815efCAS | 16706544PubMed |
(b) J. S. Yadav, T. Swamy, B. V. S. Reddy, R. Krishna, J. Mol. Catal. Chem. 2007, 274, 116.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) P. K. Chattaraj, S. Giri, S. Duley, Chem. Rev. 2011, 111, PR43.
| Crossref | GoogleScholarGoogle Scholar | 21306180PubMed |
(b) S. Pan, M. Sola, P. K. Chattaraj, J. Phys. Chem. A 2013, 117, 1843.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) P. Politzer, J. S. Murray, Theor. Chem. Acc. 2002, 108, 134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFSgs7g%3D&md5=98c16fc59e946cea31f6bb4ae1be5358CAS |
(b) O. E. Kasende, J. T. Muya, L. Broeckaert, G. Maes, P. Geerlings, J. Phys. Chem. A 2012, 116, 8608.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Mathew, C. H. Suresh, Organometallics 2011, 30, 1438.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) M. Yogo, C. Ito, H. Furukawa, Chem. Pharm. Bull. (Tokyo) 1991, 39, 328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslWqt70%3D&md5=1be173b19927fb1cad86ca7e530489cbCAS |
(b) H. J. Knölker, K. R. Reddy, Heterocycles 2003, 60, 1049.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. H. Bernardo, C. L. L. Chai, M. Le Guen, G. D. Smith, P. Waring, Bioorg. Med. Chem. Lett. 2007, 17, 82.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) R. Araya-Maturana, W. Cardona, B. K. Cassels, T. Delgado-Castro, J. Ferreira, D. Miranda, M. Pavani, H. Pessoa-Mahana, J. Soto-Delgado, B. Weiss-López, Bioorg. Med. Chem. 2006, 14, 4664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVGqtbg%3D&md5=09cee77e53e8529be3b33749ad50ce8dCAS | 16504517PubMed |
(b) L. Mendoza, R. Araya-Maturana, W. Cardona, T. Delgado-Castro, C. García, C. Lagos, M. Cotoras, J. Agric. Food Chem. 2005, 53, 10080.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. A. Valderrama, J. A. Ibacache, V. Arancibia, J. Rodriguez, C. Theoduloz, Bioorg. Med. Chem. 2009, 17, 2894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvV2hsL8%3D&md5=1fd867a984026e91a8a08e4346ae85d4CAS | 19269832PubMed |
[28] R. G. Parr, L. V. Szentpaly, S. J. Liu, J. Am. Chem. Soc. 1999, 121, 1922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFagt7o%3D&md5=47231e31f76563fd22dc1288a85c7e38CAS |
[29] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules 1989 (Oxford University Press: New York, NY).
[30] L. R. Domingo, M. J. Aurell, P. Pérez, R. Contreras, Tetrahedron 2002, 58, 4417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjsl2itr8%3D&md5=42430ac1ae7a6b830bc19167e550f9ebCAS |
[31] R. Contreras, P. Fuentealba, M. Galván, P. Pérez, Chem. Phys. Lett. 1999, 304, 405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislWlt70%3D&md5=e714fc3eebd8c17a2e167eea5d9da255CAS |
[32] (a) P. K. Chattaraj, B. Maiti, J. Phys. Chem. A 2001, 105, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1WqurY%3D&md5=76fb8453a44ea7772c0128f8279c0f23CAS |
(b) P. Jaramillo, P. Perez, R. Contreras, W. Tiznado, P. Fuentealba, J. Phys. Chem. A 2006, 110, 8181.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. De Vleeschouwer, V. Van Speybroeck, M. Waroquier, P. Geerlings, F. De Proft, Org. Lett. 2007, 9, 2721.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) R. Contreras, J. Andres, V. S. Safont, P. Campodonico, J. G. Santos, J. Phys. Chem. A 2003, 107, 5588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVOqsLg%3D&md5=6b61b7539b0b0fc09319f607d9d32a64CAS |
(b) L. R. Domingo, E. Chamorro, P. Pérez, J. Org. Chem. 2008, 73, 4615.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) J. L. Gazquez, A. Cedillo, A. Vela, J. Phys. Chem. A 2007, 111, 1966.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslOrsbg%3D&md5=4837f87d826795bb03134b3e09d697c8CAS | 17305319PubMed |
(b) S. Pratihar, S. Roy, J. Org. Chem. 2010, 75, 4957.
| Crossref | GoogleScholarGoogle Scholar |
[35] F. J. Luque, J. M. Lopez, M. Orozco, Theor. Chem. Acc. 2000, 103, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsV2htLY%3D&md5=92055c5bd1a3e11723293ec72950b984CAS |
[36] N. Okulik, A. H. Jubert, Internet Electron. J. Mol. Des. 2005, 4, 17.
| 1:CAS:528:DC%2BD2MXitVyhu7o%3D&md5=62576877935ac471918d5521139aecccCAS |
[37] R. Vijayaraj, V. Subramanian, P. K. Chattaraj, J. Chem. Theory Comput. 2009, 5, 2744.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitbjE&md5=cee19a71813ee26168708909887c888fCAS |
[38] P. Norcott, C. Spielman, C. S. P. McErlean, Green Chem. 2012, 14, 605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFymsbY%3D&md5=83d24a32142e8b5560e39e9082006a1eCAS |
[39] (a) L. C. A. Barbosa, U. A. Pereira, C. R. A. Maltha, R. R. Teixeira, V. N. M. Valente, J. R. O. Ferreira, L. V. Costa-Lotufo, M. O. Moraes, C. Pessoa, Molecules 2010, 15, 5629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGnsLfJ&md5=f831969f4e23e84f3e5b9fdbe457e892CAS |
(b) J. S. Yadav, B. V. Subba Reddy, T. Swamy, K. S. Shankar, Monatsh. Chem. 2008, 139, 1317.
| Crossref | GoogleScholarGoogle Scholar |
[40] (a) M. Staszewski, K. Walczynski, Med. Chem. Res. 2013, 22, 1287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12htrk%3D&md5=e0d8b619f45b9727fd732b5c64f558e1CAS |
(b) A. Ahmadi, M. Khalili, A. Nafarie, A. Yazdani, B. Nahri-Niknafs, Mini Rev. Med. Chem. 2012, 12, 1282.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Handzlik, M. Bajda, M. Zygmunt, D. Maciag, M. Dybala, M. Bednarski, B. Filipek, B. Malawska, K. K. Kononowicz, Bioorg. Med. Chem. 2012, 20, 2290.
| Crossref | GoogleScholarGoogle Scholar |
[41] G. M. A. Junqueira, L. C. Rocha, V. T. Cotta, E. T. César, Chem. Phys. Lett. 2012, 538, 54.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslKhtb4%3D&md5=2d0346bbbf7f1e4a1754b9e75db73cefCAS |
[42] J. A. Valderrama, R. Araya-Maturana, F. J. Zuloaga, J. Chem. Soc. Perkin Trans. 1993, 1, 1103.
[43] R. Araya-Maturana, B. K. Cassels, T. Delgado-Castro, J. A. Valderrama, B. E. Weiss-López, Tetrahedron 1999, 55, 637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpvVGmug%3D%3D&md5=815f2811daef02ec9bdbc70b0c7cf323CAS |
[44] S. C. Srivastava, U. Hornemann, Angew. Chem. 1976, 88, 87.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XovFOmug%3D%3D&md5=d2229e33b95910e18db0a204e8cf7d4fCAS |
[45] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f6cf3fb1eb0aa0bd90e09e70f7fe63aeCAS |
[46] P. J. Stephens, F. J. Devlin, C. F. Chahalowsky, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=e1e5e9babf6e7231adf55e499646050fCAS |
[47] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Rahavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challa Combe, P. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head Gordon, E. S. Replogle, J. A. Pople, Gaussian03, Revision E. 01 2004 (Gaussian, Inc.: Wallingford, CT).
[48] E. Chamorro, P. Perez, J. Chem. Phys. 2005, 123, 114107.
| Crossref | GoogleScholarGoogle Scholar | 16392551PubMed |