Tunable Organogelator from Alkyl-Polypeptide Diblock Prepared by Ring-Opening Polymerization
Chongyi Chen A , Decheng Wu A , Wenxin Fu A B and Zhibo Li A BA Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
B Corresponding authors. Email: fuwenxin@iccas.ac.cn; zbli@iccas.ac.cn
Professor Zhibo Li obtained his B.S. (1998) and Master's (2001) degrees from the University of Science and Technology of China (USTC). In 2001, he moved to the Chemistry Department at the University of Minnesota, where he completed his Ph.D. under the supervision of Professors Tim Lodge and Marc Hillmyer. In 2006, he joined Professor Tim Deming's research group at the University of California, Los Angeles, and worked for two years as a post-doctoral fellow. In 2008, he became a faculty member of the Laboratory of Polymer Physics and Chemistry in the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). His current research interests include design, synthesis, and applications of synthetic polypeptide materials. |
Dr Wenxin Fu obtained his B.S. degree from Beihang University (BUAA) in 2007 and received his Ph.D. degree from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2012 under the supervision of Professor Zhibo Li. He subsequently joined the Laboratory of Polymer Physics and Chemistry in ICCAS and worked as an assistant professor in Professor Li's research group. His current research is focused on the organic/inorganic hierarchical materials derived from synthetic polypeptides. |
Australian Journal of Chemistry 67(1) 59-65 https://doi.org/10.1071/CH13349
Submitted: 4 July 2013 Accepted: 6 August 2013 Published: 30 August 2013
Abstract
Three alkyl-polypeptide hybrid amphiphiles were synthesized by the ring-opening polymerization (ROP) of γ-(2-methoxyethoxy)esteryl-l-glutamate N-carboxyanhydride (l-EG1Glu NCA) using alkylamine, i.e. C6H13NH2, C14H29NH2, and C16H33NH2, as initiators. As-prepared alkyl-poly-l-EG1Glu hybrids were found to form clear organogels in several organic solvents at low concentration. FTIR and circular dichroism characterizations suggested that poly-l-EG1Glu formed a predominantly β-sheet conformation, which accounted for the gelation. Transmission electron and atomic force microscopy characterizations revealed that these copolymers formed nanoribbon structures in THF.
References
[1] J. H. van Esch, B. L. Feringa, Angew. Chem. Int. Ed. 2000, 39, 2263.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlGktbk%3D&md5=e4984a4fea7a64580d883e30bba79ba3CAS |
[2] E. D. Sone, E. R. Zubarev, S. I. Stupp, Angew. Chem. Int. Ed. 2002, 41, 1705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFymtbs%3D&md5=3e4e3fa50c90d75bdd84120a68e9ecf9CAS |
[3] K. J. C. van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. Int. Ed. 2003, 42, 980.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOitrw%3D&md5=97d25c49e8a55f30f3482c7cde8e621fCAS |
[4] V. Bhalla, H. Singh, M. Kumar, S. K. Prasad, Langmuir 2011, 27, 15275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCrsLrJ&md5=e98a3417012613a3e53022b1989603f1CAS | 22077212PubMed |
[5] P. Gao, C. Zhan, M. Liu, Langmuir 2006, 22, 775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlajtrjO&md5=a290d5a1df9b459552c9b2b6df868bebCAS | 16401130PubMed |
[6] P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFSitLk%3D&md5=457b1e86fd6435fb1b24f7345d8500eaCAS | 11851487PubMed |
[7] L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104, 1201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWks7w%3D&md5=5fe53710bb6ed2e47b6bb8bd421e74b1CAS | 15008620PubMed |
[8] K. Chen, L. Tang, Y. Xia, Y. Wang, Langmuir 2008, 24, 13838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVShsLbI&md5=b45580047577826db58f30dd87335013CAS | 19053634PubMed |
[9] C. Zhan, J. Wang, J. Yuan, H. Gong, Y. Liu, M. Liu, Langmuir 2003, 19, 9440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1OgsLc%3D&md5=d36f8df556d13e6d703fbcaae1fe9d22CAS |
[10] Y. Jeong, M. K. Joo, Y. S. Sohn, B. Jeong, Adv. Mater. 2007, 19, 3947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVahtrfL&md5=f6eef37fb8ba6f20b1d4ecc8e47eb8ecCAS |
[11] G. Tan, M. Singh, J. He, V. T. John, G. L. McPherson, Langmuir 2005, 21, 9322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1WltLk%3D&md5=cf62e12e00e054ebb0ffa4089ce0b157CAS | 16171368PubMed |
[12] A. Pal, J. Dey, Langmuir 2011, 27, 3401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWns7s%3D&md5=c9abf6a19a32870dbd5977bd5b2d9be8CAS | 21351761PubMed |
[13] W. Chen, Y. Yang, C. H. Lee, A. Q. Shen, Langmuir 2008, 24, 10432.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslens7g%3D&md5=b79b1f764866d8aa9d7068bc227ecf5dCAS | 18698861PubMed |
[14] P. Zhu, X. Yan, Y. Su, Y. Yang, J. Li, Chem – Eur. J. 2010, 16, 3176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFejt70%3D&md5=34417b914c6c32b8ad532fd21ea746aaCAS | 20119986PubMed |
[15] A. Motulsky, M. Lafleur, A.-C. Couffin-Hoarau, D. Hoarau, F. Boury, J.-P. Benoit, J.-C. Leroux, Biomaterials 2005, 26, 6242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1WgtLs%3D&md5=80166911ca7306d418677189e1c778d5CAS | 15916802PubMed |
[16] H. Cao, Q. Yuan, X. Zhu, Y.-P. Zhao, M. Liu, Langmuir 2012, 28, 15410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyltLnE&md5=3f03dcfe5af459a283e3bcfc07bc0a9dCAS | 23046249PubMed |
[17] A. Pal, J. Dey, Langmuir 2013, 29, 2120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Knuro%3D&md5=1cd2e83bf08cb6461602805bdea58b13CAS | 23343420PubMed |
[18] R. V. Ulijn, A. M. Smith, Chem. Soc. Rev. 2008, 37, 664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12hsbo%3D&md5=bd85fd5d0332c39e58f3a760ed0af096CAS | 18362975PubMed |
[19] F. Hermes, K. Otte, J. Brandt, M. Gräwert, H. G. Börner, H. Schlaad, Macromolecules 2011, 44, 7489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyls7bP&md5=083f01f32d6ab887e43dea14d680af70CAS |
[20] T. J. Deming, Adv. Mater. 1997, 9, 299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1Kgtbo%3D&md5=4746056adb48f2d9d1a114d01abdaa66CAS |
[21] D. G. Osterman, E. T. Kaiser, J. Cell. Biochem. 1985, 29, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltlCgs78%3D&md5=99138e9e77dd4da01b7b4827716af954CAS | 4066779PubMed |
[22] H. R. Kricheldorf, Angew. Chem. Int. Ed. 2006, 45, 5752.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1aqtrs%3D&md5=d166593f842d3ecf4f10c3908ca3d0b0CAS |
[23] N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou, Chem. Rev. 2009, 109, 5528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWktbvI&md5=5439f60c296451a4d6e00635f1414318CAS | 19691359PubMed |
[24] T. J. Deming, Soft Matter 2005, 1, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSgu7Y%3D&md5=93662897237d3c3a6c63e56f977c3ee0CAS |
[25] M. I. Gibson, N. R. Cameron, Angew. Chem. Int. Ed. 2008, 47, 5160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1Gkurc%3D&md5=04a5b4a4efd623882246b9390afbd074CAS |
[26] K. T. Kim, C. Park, G. W. M. Vandermeulen, D. A. Rider, C. Kim, M. A. Winnik, I. Manners, Angew. Chem. Int. Ed. 2005, 44, 7964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCmtbrM&md5=57dbc326b4a135987855e199a641b197CAS |
[27] K. T. Kim, C. Park, C. Kim, M. A. Winnik, I. Manners, Chem. Commun. 2006, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislWltLg%3D&md5=58264919f5450a1316b40aea3fea4cd4CAS |
[28] K. T. Kim, M. A. Winnik, I. Manners, Soft Matter 2006, 2, 957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Gnt7nM&md5=c7478ac29c3dddb0eecdc641c66a89c8CAS |
[29] C. Chen, Z. Wang, Z. Li, Biomacromolecules 2011, 12, 2859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlyhur4%3D&md5=4b5b7fc3eb8a0c412c1ae9e6d5de8a41CAS | 21718026PubMed |
[30] R. Gong, Y. Song, Z. Guo, M. Li, Y. Jiang, X. Wan, Supramol. Chem. 2013, 25, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlGisbY%3D&md5=fa2a961fd273137b056127545bbe0db3CAS |
[31] C. Chen, D. Wu, W. Fu, Z. Li, Biomacromolecules 2013, 14, 2494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKit7zJ&md5=98126367da7f6ff06fe0547eef190a0cCAS | 23822551PubMed |
[32] A. Aggeli, M. Bell, N. Boden, J. N. Keen, T. C. B. McLeish, I. Nyrkova, S. E. Radford, A. Semenov, J. Mater. Chem. 1997, 7, 1135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFeksLg%3D&md5=4a3bf6e933eb641c0e3b9aacd3dcc43bCAS |
[33] J. R. Kramer, T. J. Deming, Biomacromolecules 2010, 11, 3668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKntbjK&md5=0783f35a2c374becc535f6cd8accd811CAS | 21047056PubMed |
[34] D. L. Pickel, N. Politakos, A. Avgeropoulos, J. M. Messman, Macromolecules 2009, 42, 7781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2nsL%2FP&md5=b540347a69bf61fe99ff71a140267016CAS |
[35] H. Tang, D. Zhang, Biomacromolecules 2010, 11, 1585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2jsrc%3D&md5=eee61ffbad212bacdb9329837da6f383CAS | 20465286PubMed |
[36] Y. Li, T. Wang, M. Liu, Soft Matter 2007, 3, 1312.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sms7zM&md5=f094071dc32f9c4826dd0654a27c6abdCAS |
[37] P. I. Haris, D. Chapman, Biopolymers 1995, 37, 251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFarurg%3D&md5=bbf9faf8ce8aef8c93d73ff75e466b1eCAS | 7540054PubMed |
[38] T. Miyazawa, E. R. Blout, J. Am. Chem. Soc. 1961, 83, 712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xhs1alsw%3D%3D&md5=286402e5a6fb0dfdf0933b19b1ac7c29CAS |
[39] E. T. Pashuck, H. Cui, S. I. Stupp, J. Am. Chem. Soc. 2010, 132, 6041.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksValsLc%3D&md5=2a88871692a5747df20c95a258d76385CAS | 20377229PubMed |
[40] A. Rösler, H.-A. Klok, I. W. Hamley, V. Castelletto, O. O. Mykhaylyk, Biomacromolecules 2003, 4, 859.
| Crossref | GoogleScholarGoogle Scholar | 12857065PubMed |
[41] P. Papadopoulos, G. Floudas, H. A. Klok, I. Schnell, T. Pakula, Biomacromolecules 2004, 5, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWmtLg%3D&md5=38826619b594a2458c48ed88407cb934CAS | 14715012PubMed |
[42] J. Hwang, T. J. Deming, Biomacromolecules 2001, 2, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Khur0%3D&md5=0d74fcc63b53286260227b9e9cf2c622CAS | 11749148PubMed |
[43] H. D. Keith, G. Giannoni, F. J. Padden, Biopolymers 1969, 7, 775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkslCqu78%3D&md5=bc9b206cedf56cec17363fbe4575ec9eCAS |
[44] A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B. McLeish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. USA 2001, 98, 11857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1equrs%3D&md5=5b94274b6b750d6e509e7940ef7ad472CAS | 11592996PubMed |