Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Complex Micelles with Glucose-Responsive Shells for Self-Regulated Release of Glibenclamide

Rujiang Ma A , Xiaocheng Sun A , Xiaojun Liu A , Yingli An A and Linqi Shi A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Functional Polymer Materials, Ministry of Education, and Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.

B Corresponding author. Email: shilinqi@nankai.edu.cn




Professor Linqi Shi received his B.S. in chemistry from Hebei University, China (1984) and his Ph.D. from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (1993). He is currently a Professor and the Director of the Institute of Polymer Chemistry, Nankai University. His research involves living radical polymerizations, self-assembly of block copolymers, and polymeric nanocarriers for drug delivery. He has published more than 90 peer-reviewed papers in polymer science. He was one of the Distinguished Young Scholars financed by the National Natural Science Foundation of China (2006).

Australian Journal of Chemistry 67(1) 127-133 https://doi.org/10.1071/CH13334
Submitted: 28 June 2013  Accepted: 22 September 2013   Published: 17 October 2013

Abstract

Complex micelles with a hydrophobic poly(ϵ-caprolactone) (PCL) core and a mixed P(Asp-co-AspPBA)/PEG shell were prepared through co-assembly of two block copolymers PCL-b- P(Asp-co-AspPBA) and PEG-b-PCL in basic aqueous solutions. The P(Asp-co-AspPBA) chains (Asp = aspartic acid; AspPBA = aspartamidophenylboronic acid) collapsed and formed a shell layer around the PCL core at neutral pH while the soluble PEG chains stabilised the micelles. The collapsed P(Asp-co-AspPBA) polymer becomes soluble under higher glucose concentration and collapses onto the PCL core reversibly at lower glucose concentration. Self-regulated release of glibenclamide from the complex micelles was achieved based on the reversible change of P(Asp-co-AspPBA) chain mobility in response to the change of glucose concentration. As a result, polymeric micelles with glucose-responsive on-off switches were successfully developed.


References

[1]  K. Makino, E. J. Mack, T. Okano, W. K. Sung, J. Control. Release 1990, 12, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsFylsr0%3D&md5=943e02eca947d926ba2324c406438611CAS |

[2]  T. Miyata, T. Uragami, K. Nakamae, Adv. Drug Deliv. Rev. 2002, 54, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWk&md5=34ece8874231267df39533a339b60078CAS | 11755707PubMed |

[3]  W. Qi, X. H. Yan, J. B. Fei, A. H. Wang, Y. Cui, J. B. Li, Biomaterials 2009, 30, 2799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFams7w%3D&md5=ef2ecf2fa247eac03f27db0932fa434fCAS | 19203789PubMed |

[4]  S. Kitano, K. Kataoka, Y. Koyama, T. Okano, Y. Sakurai, Macromol. Rapid Commun. 1991, 12, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksFOjsL0%3D&md5=414ddc7a6dc96bb6a11542988f5af0b7CAS |

[5]  D. Shiino, Y. Murata, A. Kubo, Y. J. Kim, K. Kataoka, Y. Koyama, A. Kikuchi, M. Yokoyama, Y. Sakurai, T. Okano, J. Control. Release 1995, 37, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSgt7vE&md5=e24b417964ad44ecd8e67e5e0491dcd9CAS |

[6]  K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, Y. Sakurai, J. Am. Chem. Soc. 1998, 120, 12694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVaqu7g%3D&md5=53a47a6eb06bbb215e044e8250592160CAS |

[7]  A. Matsumoto, S. Ikeda, A. Harada, K. Kataoka, Biomacromolecules 2003, 4, 1410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVehtLw%3D&md5=81f216d53bb8dd2d9906a77d99bac9d4CAS | 12959613PubMed |

[8]  V. Lapeyre, I. Gosse, S. Chevreux, V. Ravaine, Biomacromolecules 2006, 7, 3356.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCqt7%2FP&md5=8880f97e8201060e0a483caa059bd0e5CAS | 17154463PubMed |

[9]  B. L. Wang, R. J. Ma, G. Liu, Y. Li, X. J. Liu, Y. L. An, L. Q. Shi, Langmuir 2009, 25, 12522.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1elt7zF&md5=413d6d215596a53375830452d9ddb36fCAS |

[10]  Y. Yao, X. M. Wang, T. W. Tan, J. Yang, Soft Matter 2011, 7, 7948.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFahsbnO&md5=92c3e8b91935e7fb31895761863760f3CAS |

[11]  Y. Yao, L. Y. Zhao, J. J. Yang, J. Yang, Biomacromolecules 2012, 13, 1837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFWjtrw%3D&md5=2169dab417cc5c28fdc7069dbb1aa425CAS | 22537190PubMed |

[12]  C. Cheng, X. G. Zhang, J. X. Xiang, Y. X. Wang, C. Zheng, Z. T. Lu, C. X. Li, Soft Matter 2012, 8, 765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ehu73P&md5=060286fbb5eca260403b2208d05d3222CAS |

[13]  R. J. Ma, H. Yang, Z. Li, G. Liu, X. C. Sun, X. J. Liu, Y. L. An, L. Q. Shi, Biomacromolecules 2012, 13, 3409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmtb%2FP&md5=4231924cc7107c99c97f8bb26ffb0c81CAS |

[14]  L. Zhao, J. X. Ding, C. S. Xiao, P. He, Z. H. Tang, X. Pang, X. L. Zhuang, X. S. Chen, J. Mater. Chem. 2012, 22, 12319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Snu78%3D&md5=94e190dd80a7c5cea096002294448455CAS |

[15]  H. Kim, Y. J. Kang, S. Kang, K. T. Kim, J. Am. Chem. Soc. 2012, 134, 4030.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGhsbg%3D&md5=bb1f916a3623a14fd783d9dc70596764CAS | 22339262PubMed |

[16]  A. Matsumoto, R. Yoshida, K. Kataoka, Biomacromolecules 2004, 5, 1038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVyrtLg%3D&md5=05957c4269b54c97b2deabed0d2903ddCAS | 15132698PubMed |

[17]  T. Hoare, R. Pelton, Biomacromolecules 2008, 9, 733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKmsQ%3D%3D&md5=5523ef0b289e88c2aa2ca87ab5100221CAS | 18198833PubMed |

[18]  T. Hoare, R. Pelton, Macromolecules 2007, 40, 670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFan&md5=255b20f13c37f3fa5caf0b6c42a3f793CAS |

[19]  Y. J. Zhang, Y. Guan, S. Q. Zhou, Biomacromolecules 2006, 7, 3196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVajt7zN&md5=4cfc406298f625ed2e74a066af5525faCAS |

[20]  B. L. Wang, R. J. Ma, G. Liu, X. J. Liu, Y. H. Gao, J. Y. Shen, Y. L. An, L. Q. Shi, Macromol. Rapid Commun. 2010, 31, 1628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKlsr%2FE&md5=32f9500552e81462ee5c45244ca5a9deCAS |

[21]  R. J. Ma, L. Q. Shi, Macromol. Biosci. 2010, 10, 1397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSmtbjN&md5=2a5e7bf7fa11f55eac494ceb04cf871cCAS |

[22]  G. Y. Li, L. Q. Shi, R. J. Ma, Y. L. An, N. Huang, Angew. Chem. Int. Ed. 2006, 45, 4959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVeit7g%3D&md5=ca2e0822c028b6fa33ec657cf7e65b66CAS |

[23]  R. J. Ma, B. L. Wang, Y. L. Xu, Y. L. An, W. Q. Zhang, G. Y. Li, L. Q. Shi, Macromol. Rapid Commun. 2007, 28, 1062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSjtbo%3D&md5=71ec8e3be191f0a939b4929f158c0914CAS |

[24]  C. L. Wu, R. J. Ma, H. He, L. Z. Zhao, H. J. Gao, Y. L. An, L. Q. Shi, Macromol. Biosci. 2009, 9, 1185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFarsbvN&md5=1022f6c94bdb94590ea0d5b7ea876e2fCAS |

[25]  Y. L. Xu, R. J. Ma, Z. K. Zhang, H. He, Y. Z. Wang, A. T. Qu, Y. L. An, X. X. Zhu, L. Q. Shi, Polymer 2012, 53, 3559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVygs7Y%3D&md5=bbb8cbc785040e79215cbc5cbb67ba10CAS |

[26]  X. J. Liu, R. J. Ma, J. Y. Shen, Y. S. Xu, Y. L. An, L. Q. Shi, Biomacromolecules 2012, 13, 1307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWhtr4%3D&md5=932540944f99583447ebb457841fbb7dCAS |

[27]  C. A. Fustin, V. Abetz, J. F. Gohy, Eur. Phys. J. E: Soft Matter Biol. Phys 2005, 16, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Crtb0%3D&md5=0b99ab7ac8cc3113dc999d3ef63c172dCAS |

[28]  T. R. Hui, D. Y. Chen, M. Jiang, Macromolecules 2005, 38, 5834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSgtr8%3D&md5=8c5d9f7378b58a4bbeb99aabf3500f66CAS |

[29]  T. J. Hu, C. Wu, Phys. Rev. Lett. 1999, 83, 4105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVejtrc%3D&md5=27b5fb5e6b5977abb5f0a28ae757733aCAS |

[30]  Z. H. Gan, J. T. Fung, X. B. Jing, C. Wu, W. K. Kuliche, Polymer 1999, 40, 1961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsVKksw%3D%3D&md5=aa5e8d3193b8d4aab84fe1565be14152CAS |

[31]  M. L. Yuan, Y. H. Wang, X. H. Li, C. D. Xiong, X. M. Deng, Macromolecules 2000, 33, 1613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFWmurY%3D&md5=2cbb99a4f0df0302705a661292778f16CAS |