Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Chemical Approaches in Processing Wheat Gluten-Based Polymer Materials

Xiaoqing Zhang
+ Author Affiliations
- Author Affiliations

CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Clayton South, Vic. 3169, Australia.
Email: Xiaoqing.Zhang@csiro.au




Dr Xiaoqing Zhang is the research group leader of the polymer engineering group at CSIRO Materials Science and Engineering, Australia. His research areas include chemical modification and processing of biodegradable polymers, nano- and bio-composites, resin chemistry, polymer emulsions, packaging materials, and application of high-resolution solid-state NMR on polymer materials.

Australian Journal of Chemistry 67(1) 6-10 https://doi.org/10.1071/CH13328
Submitted: 26 June 2013  Accepted: 23 July 2013   Published: 9 August 2013

Abstract

Processing wheat gluten-based renewable and biodegradable polymer materials through chemical modifications has been demonstrated as an effective way to improve the mechanical strength and modulus, material flexibility, barrier properties, and thermal processability, and to introduce new functionalities. Challenges still remain in further enhancing material properties, balancing hydrophilicity/hydrophobicity and biodegradability in the material, achieving a designed performance, and maintaining the material sustainability. A good understanding of protein structures, reactivity, and functionalities of wheat gluten is fundamental for such research and development, and a close collaboration between bio-chemists, polymer chemists, and material scientists is necessary for the approach.


References

[1]  P. S. Belton, J. Cereal Sci. 1999, 29, 103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFKku7c%3D&md5=b920c8b4621d7d76c886411375c9c5d7CAS |

[2]  J. Ornebro, T. Nylander, A. C. Eliasson, J. Cereal Sci. 2000, 31, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1enurc%3D&md5=6272423324c2b1ee4c691ae3f56f25dbCAS |

[3]  P. R. Shewry, Y. Popineau, D. Lafiandra, P. S. Belton, Trends Food Sci. Technol. 2000, 11, 433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1yisL8%3D&md5=257c5a6c86cdae989a5282317b92c60bCAS |

[4]  W. S. Veraverbeke, J. A. Delcour, Crit. Rev. Food Sci. Nutr. 2002, 42, 179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFSmu7g%3D&md5=ce517775ee92d9baa17190b2d8fb4859CAS | 12058979PubMed |

[5]  J. A. Bietz, G. L. Lookhart, Cereal Foods World 1996, 41, 376.
         | 1:CAS:528:DyaK28Xkt1SlsLk%3D&md5=e92bec409776508652fa4b1e232fd5c9CAS |

[6]  B. Cuq, N. Gontard, S. Guilbert, Cereal Chem. 1998, 75, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotValtw%3D%3D&md5=606d0133e385b8a6244a1a67b52f91d0CAS |

[7]  V. Micard, M. H. Morel, J. Bonicel, S. Guilbert, Polymer 2001, 42, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslKmurg%3D&md5=9d6d88e2f1f26c680260ba284ee022f4CAS |

[8]  J.-P. Lens, L. A. de Graaf, W. M. Stevels, C. H. J. T. Dietz, K. C. S. Verhelst, J. M. Vereijken, P. Kolster, Ind. Crops Prod. 2003, 17, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVGntrw%3D&md5=1aeebf7f8ff8876d3ac84f7ccd9af1e5CAS |

[9]  M. Gallstedt, A. Mattozzi, E. Johansson, M. S. Hedenqvist, Biomacromolecules 2004, 5, 2020.
         | Crossref | GoogleScholarGoogle Scholar | 15360319PubMed |

[10]  Y. Deng, W. M. J. Achten, K. V. Acker, J. R. Duflou, Biofuels Bioprod. Bioref. 2013, 7, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFalsrg%3D&md5=540dd5ce807a89b589637496e645321aCAS |

[11]  H. Wieser, Food Microbiol. 2007, 24, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagtLnM&md5=f5fa5f60dc918f4a719cc3b3e4f68c6eCAS | 17008153PubMed |

[12]  J. D. Schofield, R. C. Bottomley, M. F. Timms, M. R. Booth, J. Cereal Sci. 1983, 1, 241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVahtQ%3D%3D&md5=48a8d0b18d93534ff433cac15ee9af54CAS |

[13]  P. R. Shewry, A. S. Tatham, J. Cereal Sci. 1997, 25, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1emurY%3D&md5=ea4913c0ca746a64909e21ac5b771201CAS |

[14]  S. S. Wong, Chemistry of Protein Conjugation and Crosslinking 1993 (CRC Press: Boca Raton, FL).

[15]  J. A. Gerrard, Trends Food Sci. Technol. 2002, 13, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Giuro%3D&md5=a18d8c0f168b88faa6302c7da7564187CAS |

[16]  X. Zhang, P. Hoobin, I. Burgar, M. D. Do, J. Agric. Food Chem. 2006, 54, 9858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wmtr%2FL&md5=198771cecaf0c2de7b86166133095f0aCAS | 17177512PubMed |

[17]  V. Micard, R. Belamri, M.-H. Morel, S. G. Guilbert, J. Agric. Food Chem. 2000, 48, 2948.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1KmsL0%3D&md5=81f1c875daa01622bb535e33ffad694eCAS | 10898649PubMed |

[18]  M. H. Morel, J. Bonicel, V. Micard, S. Guilbert, J. Agric. Food Chem. 2000, 48, 186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVynsw%3D%3D&md5=f60e98c03aaa11fe649ba76899302c8dCAS | 10691614PubMed |

[19]  P. Hernandez-Munoz, A. Kanavouras, P. K. W. Ng, R. Gavara, J. Agric. Food Chem. 2003, 51, 7647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1aktb0%3D&md5=bbafaed311f1b6e47b6ee2e56d0fc8b0CAS | 14664523PubMed |

[20]  B. Lagrain, B. Goderis, K. Brijs, J. A. Delcour, Food Chem. 2008, 107, 753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCntLbJ&md5=2059bbb861cc95f49bb08fa272eb7386CAS |

[21]  S. M. Sun, Y. H. Song, Q. Zheng, Food Hydrocoll. 2007, 21, 1005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFSjs7Y%3D&md5=3bc1da29b62acb7fc868dfe5d147ac38CAS |

[22]  D. L. Woerdeman, W. S. Veraverbeke, R. S. Parnas, D. Johnson, J. A. Delcour, I. Verpoest, C. J. G. Plummer, Biomacromolecules 2004, 5, 1262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKisbg%3D&md5=1f6392f035d1abf76fa1d0a397cd23b2CAS | 15244439PubMed |

[23]  R. M. Dicharry, P. Ye, G. Saha, E. Waxman, A. D. Asandei, R. S. Parnas, Biomacromolecules 2006, 7, 2837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Git7g%3D&md5=f554b34d3248145e9deb7ef62912f72aCAS | 17025360PubMed |

[24]  Y. Song, Q. Zheng, J. Cereal Sci. 2008, 48, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslyitbY%3D&md5=c5813a95a1ae9604a2609c7ce3bd70dbCAS |

[25]  I. L. Batey, J. Cereal Sci. 1983, 1, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvVKktbg%3D&md5=2711d4a2fb7c59d8e7ac47087296a0d8CAS |

[26]  X. Zhang, M. D. Do, A. Bilyk, Biomacromolecules 2007, 8, 1881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVSgtLo%3D&md5=cc0b1aaa28595650ed4afe68e345bdabCAS | 17511502PubMed |

[27]  M. Pommet, A. Redl, S. Guilbert, M. H. Morel, J. Cereal Sci. 2005, 42, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Oitbg%3D&md5=55f4e9d07641e60846fd5ad470130842CAS |

[28]  X. Zhang, I. Burgar, M. D. Do, E. Lourbakos, Biomacromolecules 2005, 6, 1661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlGltbc%3D&md5=7d4ccd29203b0aa007567f058838f426CAS | 15877392PubMed |

[29]  L. Kurniawan, G. G. Qiao, X. Zhang, Biomacromolecules 2007, 8, 2909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12gsL8%3D&md5=256b6a47a83d245e134f3e891f6130aeCAS | 17663528PubMed |

[30]  L. Kurniawan, G. G. Qiao, X. Zhang, Macromol. Biosci. 2009, 9, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCntL4%3D&md5=c23a95c0b3b1a1f56f49157ea49ad7bbCAS | 18763260PubMed |

[31]  X. Zhang, M. D. Do, L. Kurniawan, G. G. Qiao, Carbohydr. Res. 2010, 345, 2174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygtLnL&md5=26995944e4441a3b03acd2257b7ad77fCAS | 20801432PubMed |

[32]  A. Papadopoulou, R. A. Frazier, Trends Food Sci. Technol. 2004, 15, 186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsV2ntLg%3D&md5=90e59a8a13f30183b485474c36b6db5aCAS |

[33]  H. M. Rawel, J. Kroll, U. C. Hohl, Food/ Nahrung 2001, 45, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslSks7k%3D&md5=f39bf515a8277e8565079a46fef5d527CAS |

[34]  X. Zhang, M. D. Do, P. Casey, A. Sulistio, G. G. Qiao, L. Lundin, P. Lillford, S. Kosaraju, Biomacromolecules 2010, 11, 1125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1yns78%3D&md5=72b2441d57224390cfcb06d5fe71a8aeCAS | 20235576PubMed |

[35]  X. Zhang, M. D. Do, P. Casey, A. Sulistio, G. G. Qiao, L. Lundin, P. Lillford, S. Kosaraju, J. Agric. Food Chem. 2010, 58, 6809.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVyntr0%3D&md5=1720c0580fd4ed32858331d5cd5e19f1CAS | 20469911PubMed |

[36]  X. Zhang, M. D. Do, Carbohydr. Res. 2009, 344, 1180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFaqsLk%3D&md5=ad02eab86472286dc884ebd91297983bCAS | 19447383PubMed |

[37]  K. A. Tilley, R. E. Benjamin, K. E. Bagorogoza, B. M. Okot-Kotber, O. Prakash, H. Kwen, J. Agric. Food Chem. 2001, 49, 2627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFGrt7g%3D&md5=a1bd8caa58f7025419ce77d9196c97deCAS | 11368646PubMed |

[38]  T. Michon, W. Wang, E. Ferrasson, J. Gueguen, Biotechnol. Bioeng. 1999, 63, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit12itrg%3D&md5=27abaef3937145e5c248aa19917aa3b0CAS | 10099625PubMed |

[39]  T. Kunanopparat, P. Menut, M. H. Morel, S. Guilbert, J. Agric. Food Chem. 2009, 57, 8526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVartb3E&md5=2f4cf25833a5764f47cec68528a590bcCAS | 19697918PubMed |

[40]  K. Kaewtatip, P. Menut, R. Auvergne, V. Tanrattanakul, M. H. Morel, S. Guilbert, J. Agric. Food Chem. 2010, 58, 4185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislyrtbo%3D&md5=d853af4949c4d570a5934a58effdd443CAS | 20205449PubMed |

[41]  X. Zhang, Y. Gozukara, P. Sangwan, D. Gao, S. Bateman, Polym. Degrad. Stabil. 2010, 95, 2309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2nsrfJ&md5=8ab9816e8358f535e42cea319badd283CAS |

[42]  X. Zhang, P. Hoobin, I. Burgar, M. D. Do, Biomacromolecules 2006, 7, 3466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOhtrnM&md5=b795c261cfc084247da910201487216bCAS | 17154476PubMed |

[43]  X. Zhang, M. D. Do, K. Dean, P. Hoobin, I. Burgar, Biomacromolecules 2007, 8, 345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1ymtA%3D%3D&md5=2afbe6581c606125db9e17469def636dCAS | 17291057PubMed |

[44]  Y. Song, Q. Zheng, C. Liu, Ind. Crops Prod. 2008, 28, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlyhsbk%3D&md5=d3e5e32a3797e7bd40180c24639e506eCAS |

[45]  T. Kunanopparat, P. Menut, M. H. Morel, S. Guilbert, Compos. Part A – Appl. S. 2008, 39, 777.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  M. Mastromatteo, S. Chillo, G. G. Buonocore, A. Massaro, A. Conte, M. A. Del Nobile, J. Food Eng. 2008, 88, 202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFSmsLo%3D&md5=9db76b8af53557e28c391ced8cefc162CAS |

[47]  N. Reddy, Y. Yang, Polym. Int. 2011, 60, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFyisLg%3D&md5=c44e101d4b29ff1d7360dc6169a2f965CAS |

[48]  T. Kunanopparat, P. Menut, M. H. Morel, S. Guilbert, Compos. Part A – Appl. S. 2008, 39, 1787.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  N. A. El-Wakil, J. Appl. Polym. Sci. 2009, 113, 793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltl2qtLc%3D&md5=2efadd281ba2dd7d4aa5739ae0a404caCAS |

[50]  J. T. P. Derksen, F. P. Cuperus, P. Kolster, Ind. Crops Prod. 1995, 3, 225.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  P. Chalier, A. Peyches-Bach, E. Gastaldi, N. Gontard, J. Agric. Food Chem. 2007, 55, 867.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVamug%3D%3D&md5=62ad9a20a9d32055f07416c09b9b83e5CAS | 17263487PubMed |

[52]  C. Guillaume, P. Chalier, N. Gontard, in Environmentally Compatible Food Packaging (Ed. E. Chiellini) 2008, pp. 396–418 (CRC Press: Boca Raton, FL).

[53]  C. Guillaume, J. Pinte, N. Gontard, E. Gastaldi, Food Res. Int. 2010, 43, 1395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWqtL4%3D&md5=74a66873173c7ece80a0bfbf8b702a58CAS |

[54]  D. Gomez-Martinez, P. Partal, I. Martinez, C. Gallegos, Bioresour. Technol. 2009, 100, 1828.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyrs7nJ&md5=bf464e17ffc3dc5362e08b075ab49852CAS | 19022663PubMed |

[55]  M. Devassine, F. Henry, P. Guerin, X. Briand, Int. J. Pharm. 2002, 242, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1ygtbY%3D&md5=2e6b501fdf280a1beb9705d15f16891bCAS | 12176288PubMed |

[56]  S.-W. Cho, T. O. J. Blomfeldt, H. Halonen, M. Gallstedt, M. S. Hedenqvist, Int. J. Polym. Sci. 2012, 2012, 1.
         | Crossref | GoogleScholarGoogle Scholar |