Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Methoxy-Poly(ethylene glycol)-block-Poly(ϵ-caprolactone) Bearing Pendant Aldehyde Groups as pH-Responsive Drug Delivery Carrier

Gejun Ma A , Deshan Li A , Ji Wang A , Xuefei Zhang A B C and Haoyu Tang A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, China.

B Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province and Universities of Hunan Province, Xiangtan, 411105, China.

C Corresponding authors. Email: zxf7515@163.com; cranetang@gmail.com

Australian Journal of Chemistry 66(12) 1576-1583 https://doi.org/10.1071/CH13297
Submitted: 10 June 2013  Accepted: 20 August 2013   Published: 16 September 2013

Abstract

A biodegradable amphiphilic block copolymer of methoxy poly(ethylene glycol)-block-poly(ϵ-caprolactone) bearing pendant aldehyde groups was synthesised by a combination of ring-opening polymerisation and thio-bromo ‘click’ chemistry. The free aldehyde groups on the copolymer were reacted with hydrophobic payloads (p-methoxylaniline as a model drug) by a benzoic–imine linker, which was responsive to pH change. NMR, FTIR, and gel permeation chromatography analysis confirmed the copolymer structures. In vitro release studies revealed that under acid stimulus, hydrolysis of the benzoic–imine bond resulted in a rapid drug release. This new amphiphilic block copolymer is expected to have promising applications in biodegradable controlled drug delivery systems.


References

[1]  (a) K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, J. Controlled Release 1993, 24, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVejt7g%3D&md5=00cbbde3ce25dbee24f6852b3881deadCAS |
      (b) A. N. Lukyanov, V. P. Torchilin, Adv. Drug Delivery Rev. 2004, 56, 1273.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Zhang, J. K. Jackson, H. M. Burt, Int. J. Pharm. 1996, 132, 195.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. Haag, Angew. Chem. Int. Ed. 2004, 43, 278.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyktL%2FI&md5=3aa69a8ac1efe2ed50d1f65ffbe9641eCAS | 18654426PubMed |

[3]  H. Maeda, Adv. Enzyme Regul. 2001, 41, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlekt7k%3D&md5=8e7eef87400e702cf6a0a843508da330CAS | 11384745PubMed |

[4]  R. Duncan, Nat. Rev. Cancer 2006, 6, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOmsLY%3D&md5=d27cae3f3b647f774a3d9dd5ef64d367CAS | 16900224PubMed |

[5]  H. Namazi, S. Jafarirad, J. Pharm. Pharm. Sci. 2011, 14, 162.
         | 1:CAS:528:DC%2BC3MXmslCrsbk%3D&md5=a972169dda488a0f4256bd5401bd5a3eCAS | 21733407PubMed |

[6]  K. Ulbrich, V. Šubr, Adv. Drug Delivery Rev. 2004, 56, 1023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVGitb4%3D&md5=e26bc12bf65f89b8ee3e237ec1dfb585CAS |

[7]  X. L. Wu, J. H. Kim, H. Koo, S. M. Bae, H. Shin, Bioconjug. Chem. 2010, 21, 208.
         | Crossref | GoogleScholarGoogle Scholar | 20073455PubMed |

[8]  A. W. G. Alani, Y. Bae, D. A. Rao, G. S. Kwon, Biomaterials 2010, 31, 1765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVSmtA%3D%3D&md5=398614b135b989ef2ed406157034cd02CAS |

[9]  S. Binauld, M. H. Stenzel, Chem. Commun. 2013, 49, 2082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOisrk%3D&md5=478e3b388f0a28c89c1c5f37e1357328CAS |

[10]  D. Zhang, H. Zhang, J. Nie, J. Yang, Polym. Int. 2010, 59, 967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyhu70%3D&md5=23a94d438503645930d8557cecf6d8adCAS |

[11]  F. Zhan, W. Chen, Z. Wang, W. Lu, R. Cheng, C. Deng, F. Meng, H. Liu, Z. Zhong, Biomacromolecules 2011, 12, 3612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2ktL3M&md5=5249e10b14cc836585c626917b2f9219CAS | 21905663PubMed |

[12]  Y. Gu, Y. Zhong, F. Meng, R. Cheng, C. Deng, Z. Zhong, Biomacromolecules 2013, 14, 2772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGktrw%3D&md5=4231c4571a7dbd7bdd2e20beb871d7a2CAS | 23777504PubMed |

[13]  Y. Liu, J. Liu, J. Xu, S. Feng, T. P. Davis, Aust. J. Chem. 2010, 63, 1413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aktLzF&md5=51a300a163e25692d647290ff9498c02CAS |

[14]  N. P. Desai, A. Hubbell, J. Biomed. Mater. Res. 1991, 25, 829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvF2hs7o%3D&md5=47a246ee42cd0c2e84118c9fbafae578CAS | 1833405PubMed |

[15]  H. Hussain, E. Amado, J. Kressler, Aust. J. Chem. 2011, 64, 1183.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  D. A. Herold, K. Keil, D. E. Bruns, Biochem. Pharmacol. 1989, 38, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhs1Olt7s%3D&md5=06e29f7953e87a322b29fb709d983a5fCAS | 2642704PubMed |

[17]  G. Brode, J. Koleske, J. Macromol. Sci. Chem. 1972, 6, 1109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXosVyhtA%3D%3D&md5=4d497c684905c12fbe22478ef86a91b2CAS |

[18]  E. L. Prime, J. J. Cooper-White, G. G. Qiao, Aust. J. Chem. 2006, 59, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlOnsb4%3D&md5=5879f9494039a91872c8781117bf69acCAS |

[19]  C. Allen, J. Han, Y. Yu, D. Maysinger, A. Eisenberg, J. Controlled Release 2000, 63, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSmu7o%3D&md5=775eb07cbe7f590d6069e4aeca7fb0b5CAS |

[20]  V. R. Sinha, K. Bansal, R. Kaushik, R. Kunria, A. Trehan, Int. J. Pharm. 2004, 278, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFOit7c%3D&md5=4bfe58adf6645d91d7f12411902da367CAS | 15158945PubMed |

[21]  J. A. Hubbell, Curr. Opin. Biotechnolnol. 1999, 10, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVeltLs%3D&md5=9846a9009f1faa3b271b53d472754758CAS |

[22]  M. Liu, N. Vladimirov, J. M. J. Fréchet, Macromolecules 1999, 32, 6881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVSit78%3D&md5=1f43b724e65cefe4f7f08b848ae290d3CAS |

[23]  C. Detrembleur, M. Mazza, O. Halleux, Ph. Lecomte, D. Mecerreyes, J. L. Hedrick, R. Jérôme, Macromolecules 2000, 33, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVOgtr8%3D&md5=796c4c8acf08d7baeb0e9b1ae75facd5CAS |

[24]  N. Xu, R. Wang, F. S. Du, Z. C. Li, J. Polym. Chem. 2009, 47, 3583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVGiur8%3D&md5=28165cf0cf2f99905ca7270cf0a73c52CAS |

[25]  J. Yan, Y. Zhang, Y. Xiao, Y. Zhang, M. Lang, React. Funct. Polym. 2010, 70, 400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslCgtb8%3D&md5=f7ba55501e20ac10a6258b91dcc27ed8CAS |

[26]  M. Trollsas, V. Y. Lee, D. Mecerreyes, P. Lowenhielm, M. Moller, R. D. Miller, J. L. Hedrick, Macromolecules 2000, 33, 4619.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. Xu, L. Tao, C. Boyer, A. B. Lowe, T. P. Davis, Macromolecules 2010, 43, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFaju7zM&md5=8169600e8a861e39b42b40d25dbc76fdCAS |

[28]  E. L. Prime, J. J. Cooper-White, G. G. Qiao, Aust. J. Chem. 2006, 59, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlOnsb4%3D&md5=5879f9494039a91872c8781117bf69acCAS |

[29]  R. K. Iha, B. A. Van Horn, K. L. Wooley, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2msL4%3D&md5=35d2356f0bde16cc129cec831aff38acCAS |

[30]  B. A. Van Horn, K. L. Wooley, Soft Matter 2007, 3, 1032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGktbc%3D&md5=420831009d4394f562fa81e22daaaf3aCAS |

[31]  B. A. Van Horn, R. K. Iha, K. L. Wooley, Macromolecules 2008, 41, 1618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2nsro%3D&md5=ba00732ff7988cb3a6975e50c3062f35CAS |

[32]  I. Taniguchi, A. M. Mayes, Macromolecules 2005, 38, 216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFChsrnM&md5=725906560ce2480a711b5c5cc1804a9bCAS |

[33]  J. Gu, W. P. Cheng, J. Liu, S. Y. Lo, D. Smith, X. Qu, Z. Yang, Biomacromolecules 2008, 9, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOnt7bL&md5=d1db8a84ee369d33e4f4507f6fa56ecbCAS | 18095651PubMed |

[34]  G. Wang, Y. Shi, Z. Fu, W. Yang, Q. Huang, Y. Zhang, Polymer 2005, 46, 10601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqtL3K&md5=2e2447c81bdb4f9ca8d2b43bad47d968CAS |

[35]  Y. Hu, Z. Jiang, R. Chen, W. Wu, X. Jiang, Biomacromolecules 2010, 11, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1emtw%3D%3D&md5=0bba476d191a9be15b6d5a43d582d65dCAS | 20073456PubMed |

[36]  C. Ding, J. Gu, X. Qu, Z. Yang, Bioconjug. Chem. 2009, 20, 1163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVens7g%3D&md5=ed42f9724a2604df0be37404c84ecef9CAS | 19472997PubMed |

[37]  M. Wilhelm, C. L. Zhao, Y. Wang, R. Xu, M. A. Winnik, Macromolecules 1991, 24, 1033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVehtb8%3D&md5=fc0e5263cb2622f743bea5da816e9656CAS |