Facile Fabrication of Antibacterial Core–Shell Nanoparticles Based on PHMG Oligomers and PAA Networks via Template Polymerization
You Wei Zhang A , Yan Chen A and Jiong Xin Zhao A BA State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China.
B Corresponding author. Email: zjxin@dhu.edu.cn
Jiongxin Zhao, D.E., is Professor of the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University. He has published more than 100 papers and has 27 patents in his name. His research interests include the structure and property, formation technique, and mechanism of fibres, medical fibres, and polymeric nanoparticles. |
Australian Journal of Chemistry 67(1) 142-150 https://doi.org/10.1071/CH13295
Submitted: 8 June 2013 Accepted: 14 October 2013 Published: 11 November 2013
Abstract
Antibacterial core–shell nanoparticles based on poly(hexamethylene guanidine hydrochloride) (PHMG) oligomers and poly(acrylic acid) (PAA) networks are efficiently fabricated via a facile one-step co-polymerization of acrylic acid and N,N′-methylenebisacrylamide on PHMG templates in aqueous solution. Dynamic light scattering, Fourier-transform infrared spectroscopy, and transmission electron microscopy observations were used to characterize the size, morphology, and structure of the nanoparticles, as well as the interactions between the components. Also, the stability of the nanoparticle dispersion against storage, pH value, salt, and temperature was investigated. The results show that the crosslinked PAA/PHMG nanoparticles are stabilized by electrostatic interactions. The core–shell structure of the nanoparticles was confirmed by transmission electron microscopy observation. The size of the nanoparticles increases substantially with extension of storage or with increase of the salt concentration. The nanoparticle dispersion is stable in a pH range of 2.0–4.0. The size change of the nanoparticles with pH of the medium is parabolic, and the minimum size is reached at pH 3.0. A rise of temperature leads to a slight and recoverable size increase of the nanoparticles. Antibacterial efficiency was evaluated quantitatively against Escherichia coli and Staphylococcus aureus by the plating method according to Standard JC/T 897–2002. The antibacterial activity against these two bacteria are both above 99.0 % at a nanoparticle concentration of 5 mg mL–1. This makes the nanoparticle dispersion a good candidate for the application of antibacterial water-based coatings and textiles coating.
References
[1] W. J. Ye, M. F. Leung, J. Xin, T. L. Kwong, D. K. L. Lee, P. Li, Polymer 2005, 46, 10538.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqtLzE&md5=5f2661ffc1e096758065af30ddbde46cCAS |
[2] M. Feng, P. Li, J. Biomed. Mater. Res. 2007, 80A, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Cr&md5=5652949b79c5198740a7ef580d7f7ac3CAS |
[3] K. M. Ho, X. P. Mao, L. Q. Gu, P. Li, Langmuir 2008, 24, 11036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWks7bJ&md5=1f46474c493b00e01fd1a6f7c9f7ea27CAS | 18788820PubMed |
[4] C. Y. Chuang, T. M. Don, W. Y. Chiu, J. Polym. Sci. A Polym. Chem. 2010, 48, 2377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVKms7g%3D&md5=d2d6539fc31b58f0bec323bf11a8865fCAS |
[5] P. Tanner, P. Baumann, R. Enea, O. Onaca, C. Palivan, W. Meier, Acc. Chem. Res. 2011, 44, 1039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGjtb4%3D&md5=9df90775fbbe7b24ed7a48c8020045d3CAS | 21608994PubMed |
[6] Y. J. Liu, Y. Z. Wang, D. Q. Zhuang, J. J. Yang, J. Yang, J. Colloid Interface Sci. 2012, 377, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVelu7c%3D&md5=b36fcf4269301bbdd609c67a37ffdbd6CAS |
[7] Y. Yao, L. Y. Zhao, J. J. Yang, J. Yang, Biomacromolecules 2012, 13, 1837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFWjtrw%3D&md5=2169dab417cc5c28fdc7069dbb1aa425CAS | 22537190PubMed |
[8] N. Sahiner, A. M. Alb, R. Graves, T. Mandal, G. L. Mcpherson, W. F. Reed, V. T. John, Polymer 2007, 48, 704.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFOlug%3D%3D&md5=63bf9607ce033e95350befbf725fcba1CAS |
[9] Y. J. Jung, S. J. Lee, S. W. Choi, J. H. Kim, J. Polym. Sci. A Polym. Chem. 2008, 46, 5968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyrsLrK&md5=b249214a0bb51de4802aed8978f66b78CAS |
[10] S. I. Ali, J. P. A. Heuts, B. S. Hawkett, A. M. van Herk, Langmuir 2009, 25, 10523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlemu7o%3D&md5=5abc237670441855c1b845be7b53de24CAS | 19534456PubMed |
[11] P. S. Mohanty, H. Dietsch, L. Rubatat, A. Stradner, K. Matsumoto, H. Matsuoka, P. Schurtenberger, Langmuir 2009, 25, 1940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFCqtw%3D%3D&md5=f1bde83b2cb6a235f4537c98f53d1b32CAS | 19199716PubMed |
[12] N. Sahiner, P. Ilgin, J. Polym. Sci. A Polym. Chem. 2010, 48, 5239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjs7%2FI&md5=b62df110d1cfca430c8baa83feb9f497CAS |
[13] Z. Y. Zeng, Y. Hoshino, A. Rodriguez, H. S. Yoo, K. J. Shea, ACS Nano 2010, 4, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKks7vF&md5=5359363f4146a80202da853d8cd5287dCAS |
[14] S. F. Medeiros, A. M. Santos, H. Fessi, A. Elaissari, J. Polym. Sci. A Polym. Chem. 2010, 48, 3932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFSktb0%3D&md5=2a5c5ef337277b03d7584b17b5c17bfeCAS |
[15] X. P. Ge, X. W. Ge, M. Z. Wang, H. R. Liu, B. Fang, Z. Li, X. J. Shi, C. Z. Yang, G. Li, Macromol. Rapid Commun. 2011, 32, 1615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVanu78%3D&md5=2409157d650c317b2fe7e07aab94d80bCAS |
[16] M. K. Yoo, M. K. Jang, J. W. Nah, M. R. Park, C. S. Cho, Macromol. Chem. Phys. 2006, 207, 528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVansLk%3D&md5=2ec210d48df2710fb77d2501ec42f0e6CAS |
[17] G. Njikang, D. H. Han, J. Wang, G. J. Liu, Macromolecules 2008, 41, 9727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2ns77M&md5=8bb5696307309060136420a56704f323CAS |
[18] M. Nyström, K. L. Wooley, Soft Matter 2008, 4, 849.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. Walther, A. S. Goldmann, R. S. Yelamanchili, M. Drechsler, H. Schmalz, A. Eisenberg, A. H. E. Muller, Macromolecules 2008, 41, 3254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt12qu70%3D&md5=ae98897bbef8c7f3a1aedb053951bf81CAS |
[20] Y. L. Li, W. J. Du, G. R. Sun, K. L. Wooley, Macromolecules 2008, 41, 6605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFyktbk%3D&md5=f7670d648fa10a60a35963286e71bf39CAS |
[21] Y. W. Zhang, M. Jiang, J. X. Zhao, J. Zhou, D. Y. Chen, Macromolecules 2004, 37, 1537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGntA%3D%3D&md5=5397b4f8c21e41796f43d0f876ddd045CAS |
[22] Y. W. Zhang, M. Jiang, J. X. Zhao, Z. X. Wang, H. J. Dou, D. Y. Chen, Langmuir 2005, 21, 1531.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1OhtA%3D%3D&md5=ccb5ab87a1b19237431dba6d6806d407CAS |
[23] X. Y. Liu, J. S. Kim, J. Wu, A. Eisenberg, Macromolecules 2005, 38, 6749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Krtrw%3D&md5=4f31561d929cec5f49e5cd235f0fe604CAS |
[24] D. Y. Chen, M. Jiang, Acc. Chem. Res. 2005, 38, 494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSlurw%3D&md5=a15cced3dc08bb170df8127dafcfbbb0CAS |
[25] M. Y. Guo, M. Jiang, Soft Matter 2009, 5, 495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yjtLk%3D&md5=597b9647da6ae9485bfa8e0c6a0f06a3CAS |
[26] M. F. Leung, J. M. Zhu, F. W. Harris, P. Li, Macromol. Rapid Commun. 2004, 25, 1819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWis7vJ&md5=30bd3dd23598bad2905d5b1f14f2c35aCAS |
[27] M. H. Tang, H. J. Dou, K. Sun, Polymer 2006, 47, 728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFOqsg%3D%3D&md5=456d1e943c60810980ad6d83a05f69d9CAS |
[28] N. Pimpha, U. Rattanonchai, S. Surassmo, P. Opanasopit, C. Rattanarungchai, P. Sunintaboon, Colloid Polym. Sci. 2008, 286, 907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFaksLw%3D&md5=380ca342c069eb8bcd153f14deb96d83CAS |
[29] X. He, J. H. Liu, X. D. Ye, L. Y. Xie, Q. L. Zhang, X. Z. Ren, G. Z. Zhang, C. Wu, Langmuir 2008, 24, 10717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWks7jK&md5=3c4b33944b261d563a3637ee5ba4d3e3CAS |
[30] Y. W. Zhang, Z. X. Wang, Y. S. Wang, J. X. Zhao, C. X. Wu, Polymer 2007, 48, 5639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSkurbN&md5=70a9b79da4f49753c61671d944d0c225CAS |
[31] Y. S. Wang, Y. W. Zhang, C. X. Wu, J. X. Zhao, Polymer 2007, 48, 5950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGitrvM&md5=e5530eb120cab1cf08210259236df01bCAS |
[32] Y. S. Wang, Y. W. Zhang, W. P. Du, C. X. Wu, J. X. Zhao, J. Colloid Interface Sci. 2009, 334, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFGit7g%3D&md5=fdb6a61948ff48ea6f33ce5a316e352dCAS |
[33] Y. W. Zhang, Q. R. Jin, J. X. Zhao, C. X. Wu, Q. Q. Fan, Q. M. Wu, Eur. Polym. J. 2010, 46, 1425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFWmsLg%3D&md5=6e199e0f9d9088bc309b84fffa7b7228CAS |
[34] Y. W. Zhang, Q. R. Jin, Y. Chen, J. X. Zhao, J. Nanopart. Res. 2011, 13, 4451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OitrzF&md5=f94500a40d30bd07a5c876a181f89825CAS |
[35] M. K. Oulé, R. Azinwi, A.-M. Bernier, T. Kablan, A.-M. Maupertuis, S. Mauler, R. K. Nevry, K. Dembélé, L. Forbes, L. Diop, J. Med. Microbiol. 2008, 57, 1523.
| Crossref | GoogleScholarGoogle Scholar | 19018024PubMed |
[36] F. C. Krebs, S. R. Miller, M. L. Ferguson, M. Labib, R. F. Rando, B. Wigdahl, Biomed. Pharmacother. 2005, 59, 438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKjsbnN&md5=4b1be2e7836eb1694ce0a03ad4020b71CAS | 16154720PubMed |
[37] P. Gilbert, L. E. Moore, J. Appl. Microbiol. 2005, 99, 703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyhsr3J&md5=24e7e79d945712c52c619601ef2677d0CAS | 16162221PubMed |
[38] G. Müller, A. Kramer, J. Orthop. Res. 2005, 23, 127.
| Crossref | GoogleScholarGoogle Scholar | 15607884PubMed |
[39] Y. M. Zhang, J. M. Jiang, Y. M. Chen, Polymer 1999, 40, 6189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFCkt7k%3D&md5=d0306df234e02d80abf25d5c22616f98CAS |
[40] E. Y. Aleshina, T. N. Yudanova, I. F. Skokova, Fibre Chem. 2001, 33, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaltro%3D&md5=755485d30fcaba372f6dc0744cc839b2CAS |
[41] D. F. Wei, Q. X. Ma, Y. Guan, F. Z. Hu, A. N. Zheng, X. Zhang, Z. Teng, H. Jiang, Mater. Sci. Eng. C 2009, 29, 1776.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCrt7c%3D&md5=8500b32c17f2ca05d0b339e7673933aaCAS |
[42] J. Wang, The Building Materials Industry Standard of the People’s Republic of China. JC/T897-2002: Antiseptic Function of Antibacterial Ceramic 2002 (China Building Materials Press: Beijing).
[43] Y. W. Zhang, M. Jiang, J. X. Zhao, X. W. Ren, D. Y. Chen, G. Z. Zhang, Adv. Funct. Mater. 2005, 15, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ers74%3D&md5=2abeed36d8ae36cf3732574e359e90e2CAS |
[44] Y. W. Zhang, J. X. Zhao, M. Jiang, J. Y. Wang, Chem. J. Chin. Univ. 2006, 27, 1762.
| 1:CAS:528:DC%2BD28XhtVertbrI&md5=490057b09fa9b0eff2324562b59284dcCAS |
[45] A. Fyfe, M. S. Mckinnon, Macromolecules 1986, 19, 1909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVemsr4%3D&md5=52ef53c7d998b0da0f8421c512b8ad47CAS |