Sequence Effects on Properties of the Poly(p-phenylene terephthalamide)-based Macroinitiators and their Comb-like Copolymers Grafted by Polystyrene Side Chains
Shuming Du A , Jie Zhang A , Yan Guan A and Xinhua Wan A BA Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
B Corresponding author. Email: xhwan@pku.edu.cn
Xin-Hua Wan received his BCE (1985) degree from Hefei University of Technology, MA (1988) and Ph.D. (1991) degrees from China Textile University. After working as a postdoctoral researcher at Peking University for 2 years, he became an Associate Professor (1993) and a Full Professor (1997) of polymer chemistry and physics there. He visited the University of Akron (2001) and Harvard University (2004) as a senior visiting scholar, and Hokkaido University as a visiting professor. His current research interests include optically active helical polymers, self-assembly of block copolymers, and design and synthesis of macromolecules with controlled architecture and well-defined shape. |
Australian Journal of Chemistry 67(1) 39-48 https://doi.org/10.1071/CH13291
Submitted: 5 June 2012 Accepted: 15 July 2013 Published: 26 August 2013
Abstract
Two poly(p-phenylene terephthalamide) (PPTA)-based macroinitiators with random and alternate sequences, i.e. poly(p-phenylene terephthalamide)-ran-poly[p-phenylene (2,2,6,6-tetramethylpiperidinyl-1-oxy)terephthalamide)] (CPPTA-ran) and poly(p-phenylene terephthalamide)-alt-poly[p-phenylene (2,2,6,6-tetramethylpiperidinyl-1-oxy)terephthalamide)] (CPPTA-alt), were prepared via copolycondensation of terephthaloyl chloride, 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO)-functionalized terephthaloyl chloride, and p-phenylenediamine. The graft copolymers consisting of rigid PPTA backbones and polystyrene side chains were obtained by nitroxide-mediated radical polymerization. Both macroinitiators and graft copolymers were characterized by thermal gravimetric analysis, differential scanning calorimetry, wide-angle X-ray diffraction, and polarized optical microscopy. The regular incorporation of the TEMPO-containing co-unit gives rise to remarkable effects on the thermal stability, lyotropic liquid crystallinity, and macromolecular packing in bulk. CPPTA-alt shows better thermal stability and more ordered intermolecular structure than CPPTA-ran. The former generates a nematic phase at a concentration of 18 wt-% in concentrated sulfuric acid, whereas the latter does so at a concentration of 12 wt-%. For the graft copolymers, the alternative main chains exhibit sharper diffraction than the random ones. However, the sequence change exerts no discernible effect on other properties.
References
[1] K. Matyjaszewski, Science 2011, 333, 1104.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WisbnL&md5=70a587f23380f55e7fbd58fa25e20da1CAS | 21868664PubMed |
[2] C. Feng, Y. Li, D. Yang, J. Hu, X. Zhang, X. Huang, Chem. Soc. Rev. 2011, 40, 1282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kis7Y%3D&md5=54f4861748e40193de56e9d780aa2349CAS | 21107479PubMed |
[3] H. I. Lee, J. Pietrasik, S. S. Sheiko, K. Matyjaszewski, Prog. Polym. Sci. 2010, 35, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotV2gsw%3D%3D&md5=ad0a8da8479dbbf447f40f0a1df66625CAS |
[4] S. S. Sheiko, B. S. Sumerlin, K. Matyjaszewski, Prog. Polym. Sci. 2008, 33, 759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Sltro%3D&md5=59989f49fe55d338e1d61fb57048cdebCAS |
[5] M. Zhang, A. H. E. Müller, J. Polym. Sci. A Polym. Chem. 2005, 43, 3461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVejtLk%3D&md5=bae21c13e55dd9a3fe1cb5cd46be4c2fCAS |
[6] G. D. Fu, E. T. Kang, K. G. Neoh, C. C. Lin, D. J. Liaw, Macromolecules 2005, 38, 7593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt12rt7w%3D&md5=81887aeb068d870429fb373f41344415CAS |
[7] Y. Chen, W. Wang, W. Yu, Z. Yuan, E. T. Kang, K. G. Neoh, B. Krauter, A. Greiner, Adv. Funct. Mater. 2004, 14, 471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslCgtr8%3D&md5=71a6c7a361b002b0a11e2173ca152b0aCAS |
[8] F. W. Harris, H. Ding, US Patent 5 491 200 1996.
[9] C. J. Hawker, J. L. Hedrick, Macromolecules 1995, 28, 2993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Kjtr0%3D&md5=bc5b4c40272b1734ff1f20cf8478c55dCAS |
[10] N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, M. D. Guiver, Angew. Chem. Int. Ed. 2011, 50, 9158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOms7bF&md5=3bc0764f79d75ce66c2cb9c39d794f93CAS |
[11] T. B. Norsten, M. D. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, J. Ding, Adv. Funct. Mater. 2006, 16, 1814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKgur3L&md5=17d072dde49d95275d9aef9b54079605CAS |
[12] E. L. Sahkulubey, Y. Y. Durmaz, A. L. Demirel, Y. Yagci, Macromolecules 2010, 43, 2732.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSjsbc%3D&md5=4cf0c79dd636c997a37a3d3e77b4e535CAS |
[13] L. M. Sun, X. H. Fan, X. F. Chen, X. F. Liu, Q. F. Zhou, J. Polym. Sci. A Polym. Chem. 2007, 45, 2543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKksrw%3D&md5=f403e159104c25f3ec8e357c1c18c3c9CAS |
[14] U. S. Agarwal, D. V. Khakhar, Nature 1992, 360, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFWqsrg%3D&md5=c8f82321008ca31af42fc652537929c5CAS |
[15] S. Ueta, T. Sakamoto, M. Takayanagi, Polym. J. 1993, 25, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXot1SjsQ%3D%3D&md5=954fc8ed61e6678d605e1d2da1b09eb1CAS |
[16] J. Brisson, R. Lebossé, Colloid Polym. Sci. 1993, 271, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlCrsLk%3D&md5=bf46c5736fd11d9ac5cb10f199412deaCAS |
[17] R. Simonutti, A. Mariani, P. Sozzani, S. Bracco, M. Piacentini, S. Russo, Macromolecules 2002, 35, 3563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlOrs74%3D&md5=ddf44bceb83cd98a3e320286b15ec54dCAS |
[18] M. Monleón Pradas, G. Schaber, J. L. Gomez Ribelles, F. Romero Colomer, Macromolecules 1997, 30, 3612.
| Crossref | GoogleScholarGoogle Scholar |
[19] B. Guo, Z. Liu, L. Hong, J. Mater. Chem. 2011, 21, 12414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFCqsrk%3D&md5=a2afd3b0a44f3c4cd338721d6df08d9dCAS |
[20] L. Deng, R. J. Young, S. van der Zwaag, S. Picken, Polymer 2010, 51, 2033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFCjtLs%3D&md5=34b0b7410971d8f90d9302877f2e05ceCAS |
[21] C. de Ruijter, W. F. Jager, L. Li, S. J. Picken, Macromolecules 2006, 39, 4411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkslyks7k%3D&md5=b0c6890a13d6a47a4b4c911c59b4f481CAS |
[22] C. de Ruijter, W. F. Jager, J. Groenewold, S. J. Picken, Macromolecules 2006, 39, 3824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFKqt7o%3D&md5=a1826c55ac971f55b2472071aabf0d0dCAS |
[23] M. Takayanagi, K. Goto, J. Appl. Polym. Sci. 1984, 29, 2057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksFGlsL8%3D&md5=8cfb2dfd664a109a3da24a7f78da03e1CAS |
[24] D. R. Moore, L. J. Mathias, J. Appl. Polym. Sci. 1986, 32, 6299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXosFKhug%3D%3D&md5=9eb6b822ea6d2b2a5da308ec963c9f2dCAS |
[25] M. Takayanagi, T. Katayose, J. Polym. Sci. A Polym. Chem. 1981, 19, 1133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVOqurc%3D&md5=efbe161a858f26623530e05c10d9fcdfCAS |
[26] S. M. Aharoni, J. Appl. Polym. Sci. 1994, 53, 1615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVSns78%3D&md5=490ecece29dcdd25561395cee2601d4aCAS |
[27] S. M. Aharoni, Polym. Bull. 1993, 30, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktV2ht7Y%3D&md5=994535fc5fa4bc3fd54ca2b1a8a37753CAS |
[28] E. Lebedeva, B. S. Kesler, K. R. Carter, J. Polym. Sci. A Polym. Chem. 2005, 43, 2266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVagtbo%3D&md5=305977e4d601216e4afa3e7b9683fbcdCAS |
[29] Y. Guan, Y. Zheng, J. Cui, X. Wan, Chinese J. Polym. Sci. 2010, 28, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFCqtLk%3D&md5=d32ed1eef374360df103e918e1324babCAS |
[30] S. Nakata, J. Brisson, J. Polym. Sci. A Polym. Chem. 1997, 35, 2379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVGqt7w%3D&md5=3cda8fb63064f127ec1433c13b7c6d96CAS |
[31] G. D. Litovchenko, V. D. Kalmykova, T. S. Sokolova, A. V. Volokhina, G. I. Kudryavtsev, S. P. Papkov, J. Appl. Spectrosc. 1976, 24, 776.
| Crossref | GoogleScholarGoogle Scholar |
[32] N. Ogata, K. Sanui, S. Kitayama, J. Polym. Sci. A Polym. Chem. 1984, 22, 865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXht1WqsrY%3D&md5=01fb7873fd883c7ed5ae2756747e7f1bCAS |
[33] H. Rommel, G. Foerster, Macromolecules 1994, 27, 4570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvVCmtbo%3D&md5=4c2fd863611f20c251514877097eb749CAS |
[34] H. Shi, Y. Zhao, X. Zhang, Y. Zhou, Y. Xu, S. Zhou, D. Wang, C. C. Han, D. Xu, Polymer 2004, 45, 6299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1ynt7k%3D&md5=28a2dcec4cbffef66877af3973f7b34cCAS |
[35] H. Shi, Y. Zhao, X. Dong, Y. Zhou, D. Wang, Chem. Soc. Rev. 2013, 42, 2075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1GrsbY%3D&md5=cc613555e4b52df2d6048078312ba573CAS | 23243663PubMed |