Optical Characterisation of Non-Covalent Interactions between Non-Conjugated Polymers and Chemically Converted Graphene
Yufei Wang A , Xueliang Hou A , Chi Cheng A , Ling Qiu A , Xuehua Zhang B , George P. Simon A and Dan Li A CA Department of Materials Engineering, Monash University, Clayton, Vic. 3168, Australia.
B Department of Chemical and Biomolecular Engineering and Particulate Fluid Processing Center, University of Melbourne, Melbourne, Vic. 3010, Australia.
C Corresponding author. Email: Dan.Li2@monash.edu
Professor Dan Li received his Ph.D. degree in materials physics and chemistry from the University of Electronic Science and Technology of China in 1999. After several years working as a Research Fellow at Nanjing University of Science and Technology, University of Washington, University of California, Los Angles, and University of Wollongong, he joined Monash University as an associate professor in 2008 and was promoted to full professor in 2012. His current research interests are centred on synthesis and properties of graphene-based soft materials and their applications in energy storage and conversion, nanofluidics, bionics, and environmental protection. |
Australian Journal of Chemistry 67(1) 168-172 https://doi.org/10.1071/CH13243
Submitted: 7 May 2013 Accepted: 13 June 2013 Published: 10 July 2013
Abstract
Optical characterisation using dye molecules as probes was used to study the non-covalent interactions between chemically converted graphene (CCG) and non-conjugated, water soluble polymers in aqueous solution. The strong adsorption of non-conjugated polymers such as poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) on CCG is observed by fluorescence and ultraviolet-visible spectroscopy and atomic force microscopy, and this leads to desorption of π-conjugated molecules from CCG. Such adsorption/desorption behaviour can be tailored by modifying the molecular weight of polymers and the chemistry of graphene. This finding provides a facile and non-covalent approach to the functionalisation of CCG and opens up new opportunities for the fabrication of graphene/polymer nanocomposites.
References
[1] A. K. Geim, Science 2009, 324, 1530.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOrsLk%3D&md5=ad52339ba92667f08e9f3c09e910af95CAS | 19541989PubMed |
[2] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrvI&md5=86be07eb586424207c7d14964e8e3f7fCAS | 20023850PubMed |
[3] M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCnu78%3D&md5=5fb0609b98bc3c30fa8750848e708a77CAS | 19610631PubMed |
[4] H. Bai, C. Li, G. Q. Shi, Adv. Mater. 2011, 23, 1089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFajsro%3D&md5=3ee303055687962b0785632df769badbCAS | 21360763PubMed |
[5] M. Terrones, O. Martín, M. González, J. Pozuelo, B. Serrano, J. C. Cabanelas, S. M. Vega-Díaz, J. Baselga, Adv. Mater. 2011, 23, 5302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyls73J&md5=b9a22804a8179399aae4c951d644598cCAS | 22299145PubMed |
[6] X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFKitg%3D%3D&md5=127a37c37a6175de5877d7fdfd2cbcb0CAS | 21796314PubMed |
[7] S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, R. S. Ruoff, J. Mater. Chem. 2006, 16, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlanurzO&md5=6972b19353261d56e73dd3838b55d1b9CAS |
[8] Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J. Am. Chem. Soc. 2008, 130, 5856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVOrsr8%3D&md5=d8dc3ff104663988f664ce8aacf8eef1CAS |
[9] X. H. An, T. Simmons, R. Shah, C. Wolfe, K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra, S. Kar, Nano Lett. 2010, 10, 4295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Wru7w%3D&md5=76158b7e0429257feb6b5788fed604b2CAS |
[10] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 2008, 319, 1229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVSksL0%3D&md5=899da9a0c601682dd4c94f2b3e1cc658CAS | 18218865PubMed |
[11] Y. Xu, L. Zhao, H. Bai, W. Hong, C. Li, G. Q. Shi, J. Am. Chem. Soc. 2009, 131, 13490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgu77E&md5=94627e533d48f4cf483042d94288e95dCAS | 19711892PubMed |
[12] A. J. Patil, J. L. Vickery, T. B. Scott, S. Mann, Adv. Mater. 2009, 21, 3159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCgurrP&md5=9fdd9c60754c781ad9b1f9f44a2a75eeCAS |
[13] H. W. C. Postma, Nano Lett. 2010, 10, 420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVKk&md5=9527dda95240e2189a7b9fa014905164CAS |
[14] V. Oles, J. Colloid Interface Sci. 1992, 154, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFahtrg%3D&md5=070c1e63d3f14d178c671c6225c74f20CAS |
[15] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman, J. Am. Chem. Soc. 2009, 131, 3611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1ersrk%3D&md5=1831545900453f56169bcb6d66574139CAS | 19227978PubMed |
[16] W. Yang, E. Widenkvist, U. Jansson, H. Grennberg, New J. Chem. 2011, 35, 780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVSjtL0%3D&md5=121d2ccd6624d474ad4932bc5635c630CAS |
[17] M. Fang, K. G. Wang, H. B. Lu, Y. L. Yang, S. Nutt, J. Mater. Chem. 2010, 20, 1982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitleit74%3D&md5=8b567965f4625c94ac56ff040cf1078cCAS |
[18] Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc. 2008, 130, 10876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVCqu78%3D&md5=9099a8d68e483abb4b3d1f15e4676c96CAS | 18661992PubMed |
[19] G. Y. He, H. Q. Chen, J. W. Zhu, F. L. Bei, X. Q. Sun, X. Wang, J. Mater. Chem. 2011, 21, 14631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2htb3M&md5=3041f849cee78f1726c08b676bac77c0CAS |
[20] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 2008, 3, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1ajtLs%3D&md5=f1550982d2f3b5d4418e70885e893fb0CAS | 18654470PubMed |
[21] K. Xu, P. G. Cao, J. R. Heath, Science 2010, 329, 1188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hsr7K&md5=2dd2a3882aeb06db0f8e477ed5d695b0CAS | 20813950PubMed |
[22] X. Zhang, Y. Wang, S. Watanabe, M. H. Uddin, D. Li, Soft Matter 2011, 7, 8745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2jsr3K&md5=e8031b9199529c4af58de57741fa179eCAS |
[23] S. Z. Zu, B. H. Han, J. Phys. Chem. C 2009, 113, 13651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2mu74%3D&md5=f0034b337c32c65f4a838a781cb611a7CAS |
[24] X. Bai, Y. H. Zhai, Y. Zhang, J. Phys. Chem. C 2011, 115, 11673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1GgsLY%3D&md5=defe8029595ccf79b1192166c02efd43CAS |
[25] J. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo, Y. S. Chen, Adv. Funct. Mater. 2009, 19, 2297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFGiur4%3D&md5=4936e6a2ed805cb8ae8bd88c372722a3CAS |