Dinuclear Cu(ii) 1,2,3-Triazole-Bridged Complex with Ferromagnetic Coupling
Shi-Qiang Bai A E , Lu Jiang B , Jing-Lin Zuo C , Chun-Hua Yan D and T. S. Andy Hor A B EA Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602, Singapore.
B Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
C State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
D Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
E Corresponding authors. Email: bais@imre.a-star.edu.sg; andyhor@nus.edu.sg
Australian Journal of Chemistry 66(9) 1029-1033 https://doi.org/10.1071/CH13224
Submitted: 30 April 2013 Accepted: 12 June 2013 Published: 16 July 2013
Abstract
A new dinuclear Cu(ii) complex [Cu2Cl4(L1)2] (1) (L1 = 1-(2-picolyl)-4-hexyl-1H-1,2,3-triazole) has been synthesised and characterised by single-crystal X-ray diffraction (XRD) and powder XRD, thermogravimetric analysis, electron paramagnetic resonance spectrum, photoluminescence, and magnetic measurements. Complex 1 shows double 1,2,3-triazoles bridging the dinuclear Cu2N4 moiety, in which the bridging N=N bond indicates basal-apical asymmetric mode with 112.6° torsion angle of Cu–N=N–Cu. Different from most azole-bridged dinuclear Cu(ii) with antiferromagnetic couplings, complex 1 shows an intramolecular weak ferromagnetic interaction (J = 0.91 cm–1).
References
[1] (a) Magneto-Structural Correlations in Exchange Coupled Systems (Eds R. D. Willett, D. Gatteschi, O. Kahn) 1985 (Reidel: Dordrecht).(b) R. L. Carlin, Magnetochemistry 1986 (Springer: New York, NY).
(c) O. Kahn, Molecular Magnetism 1993 (Wiley: New York, NY).
(d) Magnetism: Molecules to Materials (Eds J. S. Miller, M. Drillon) 2001 (Wiley: Weinheim).
(e) J. S. Miller, Chem. Soc. Rev. 2011, 40, 3266.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Moro-oka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, A. Nakamura, J. Am. Chem. Soc. 1992, 114, 1277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XpvVWisA%3D%3D&md5=0672bcc70f584aedf78bef9d02f0b320CAS |
(b) A. L. Gavrilova, B. Bosnich, Chem. Rev. 2004, 104, 349.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. A. MacKay, M. D. Fryzuk, Chem. Rev. 2004, 104, 385.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Magnuson, M. Anderlund, O. Johansson, P. Lindblad, R. Lomoth, T. Polivka, S. Ott, K. Stensjö, S. Styring, V. Sundström, L. Hammarström, Acc. Chem. Res. 2009, 42, 1899.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Martínez, I. Membrillo, V. M. Ugalde-Saldívar, L. Gasque, J. Phys. Chem. B 2012, 116, 8038.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. G. Haasnoot, Coord. Chem. Rev. 2000, 200–202, 131.
| Crossref | GoogleScholarGoogle Scholar |
(b) N. Robertson, L. Cronin, Coord. Chem. Rev. 2002, 227, 93.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Pardo, R. Ruiz-García, J. Cano, X. Ottenwaelder, R. Lescouëzec, Y. Journaux, F. Lloret, M. Julve, Dalton Trans. 2008, 2780.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Chem. Rev. 2012, 112, 1001.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. Aromí, D. Aguilà, P. Gamez, F. Luis, O. Roubeau, Chem. Soc. Rev. 2012, 41, 537.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) R. Prins, P. J. M. W. L. Birker, J. G. Haasnoot, G. C. Verschoor, J. Reedijk, Inorg. Chem. 1985, 24, 4128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVCkur4%3D&md5=537447ca74fdb7d669764f102812af61CAS |
(b) V. P. Hanot, T. D. Robert, J. Kolnaar, J. G. Haasnoot, J. Reedijk, H. Kooijman, A. L. Spek, J. Chem. Soc., Dalton Trans. 1996, 4275.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Spodine, A. M. Atria, J. Valenzuela, J. Jalocha, J. Manzur, A. M. García, M. T. Garland, O. Peña, J.-Y. Saillard, J. Chem. Soc., Dalton Trans. 1999, 3029.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Ferrer, P. J. van Koningsbruggen, J. G. Haasnoot, J. Reedijk, H. Kooijman, A. L. Spek, L. Lezama, A. M. Arif, J. S. Miller, J. Chem. Soc., Dalton Trans. 1999, 4269.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. H. Klingele, P. D. W. Boyd, B. Moubaraki, K. S. Murray, S. Brooker, Eur. J. Inorg. Chem. 2005, 910.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. Tanase, I. A. Koval, E. Bouwman, R. de Gelder, J. Reedijk, Inorg. Chem. 2005, 44, 7860.
| Crossref | GoogleScholarGoogle Scholar |
(g) T.-L. Hu, J.-R. Li, C.-S. Liu, X.-S. Shi, J.-N. Zhou, X.-H. Bu, J. Ribas, Inorg. Chem. 2006, 45, 162.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. Olguín, M. Kalisz, R. Clérac, S. Brooker, Inorg. Chem. 2012, 51, 5058.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=a7cb70cd3e268b3421cca3b9b998eff4CAS |
(b) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. G. Finn, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1231.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) M. L. Gower, J. D. Crowley, Dalton Trans. 2010, 39, 2371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSjtrw%3D&md5=9f56266ea637b795d81610651e2c01c2CAS | 20162211PubMed |
(b) D. Urankar, B. Pinter, A. Pevec, F. D. Proft, I. Turel, J. Košmrlj, Inorg. Chem. 2010, 49, 4820.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Fu, H. Li, X. Chen, J. Qin, Inorg. Chem. Commun. 2011, 14, 268.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. Amadio, M. Bertoldini, A. Scrivanti, G. Chessa, V. Beghetto, U. Matteoli, R. Bertani, A. Dolmella, Inorg. Chim. Acta 2011, 370, 388.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. Hua, K. Q. Vuong, M. Bhadbhade, B. A. Messerle, Organometallics 2012, 31, 1790.
| Crossref | GoogleScholarGoogle Scholar |
(f) C. B. Anderson, A. B. S. Elliott, C. J. McAdam, K. C. Gordon, J. D. Crowley, Organometallics 2013, 32, 788.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S.-Q. Bai, L. L. Koh, T. S. A. Hor, Inorg. Chem. 2009, 48, 1207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWnuw%3D%3D&md5=9426f634d0aa2f08cdba099f277113d9CAS | 19123783PubMed |
(b) S.-Q. Bai, J. Y. Kwang, L. L. Koh, D. J. Young, T. S. A. Hor, Dalton Trans. 2010, 39, 2631.
| Crossref | GoogleScholarGoogle Scholar |
(c) S.-Q. Bai, S. Leelasubcharoen, X. Chen, L. L. Koh, J.-L. Zuo, T. S. A. Hor, Cryst. Growth Des. 2010, 10, 1715.
| Crossref | GoogleScholarGoogle Scholar |
(d) S.-Q. Bai, D. J. Young, T. S. A. Hor, Chem. - Asian J. 2011, 6, 292.
| Crossref | GoogleScholarGoogle Scholar |
(e) S.-Q. Bai, A. M. Yong, J. J. Hu, D. J. Young, X. Zhang, Y. Zong, J. Xu, J.-L. Zuo, T. S. A. Hor, CrystEngComm 2012, 14, 961.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. Jiang, Z. Wang, S.-Q. Bai, T. S. A. Hor, Dalton Trans. 2013, 42, 9437.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) E.-Q. Gao, Y.-F. Yue, S.-Q. Bai, Z. He, C.-H. Yan, J. Am. Chem. Soc. 2004, 126, 1419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFSjtQ%3D%3D&md5=dbc6d97bb07300dabd4eb36d00bb4232CAS | 14759200PubMed |
(b) S.-Q. Bai, E.-Q. Gao, Z. He, C.-J. Fang, C.-H. Yan, New J. Chem. 2005, 29, 935.
| Crossref | GoogleScholarGoogle Scholar |
(c) S.-Q. Bai, E.-Q. Gao, Z. He, C.-J. Fang, Y.-F. Yue, C.-H. Yan, Eur. J. Inorg. Chem. 2006, 407.
| Crossref | GoogleScholarGoogle Scholar |
(d) S.-Q. Bai, C.-J. Fang, Z. He, E.-Q. Gao, C.-H. Yan, T. S. A. Hor, Dalton Trans. 2012, 41, 13379.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) B. J. Hathaway, D. E. Billing, Coord. Chem. Rev. 1970, 5, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvFCitbw%3D&md5=cd1d26a8043ea817034f70615a894738CAS |
(b) I. Bertini, D. Gatteschi, A. Scozzafava, Coord. Chem. Rev. 1979, 29, 67.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Ribas Gispert, Coordination Chemistry 2008 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
[10] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=6c9542f3267a4f0774f4ff3459a5b808CAS |
[11] B. Bleaney, K. D. Bowers, Proc. R. Soc. Lond. A Math. Phys. Sci. 1952, 214, 451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XmsVCjsA%3D%3D&md5=6c3811b733fac5e9d4c948c3e598eb2dCAS |
[12] (a) Y.-F. Yue, B.-W. Wang, E.-Q. Gao, C.-J. Fang, C. He, C.-H. Yan, Chem. Commun. 2007, 2034.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVWru7o%3D&md5=5a0511fd5df5eeddc098d8d3ce86ee7dCAS |
(b) C. Richardson, P. J. Steel, Dalton Trans. 2003, 992.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. M. Guha, H. Phan, J. S. Kinyon, W. S. Brotherton, K. Sreenath, J. T. Simmons, Z. Wang, R. J. Clark, N. S. Dalal, M. Shatruk, L. Zhu, Inorg. Chem. 2012, 51, 3465.
| Crossref | GoogleScholarGoogle Scholar |
[13] Bruker AXS, SMART version 5.631 and SAINT version 6.63 Software Reference Manuals 2000 (Bruker AXS GmbH: Karlsruhe).
[14] G. M. Sheldrick, Software for Empirical Absorption Correction: SADABS 2001 (University of Göttingen: Göttingen).
[15] (a) G. M. Sheldrick, Program for Crystal Structure Solution: SHELXS-97 1997 (University of Göttingen: Göttingen).
(b) G. M. Sheldrick, Program for Crystal Structures Refinement: SHELXL-97 1997 (University of Göttingen: Göttingen).