Quantitative Detection with Surface Enhanced Raman Scattering (SERS) Using Self-Assembled Gold Nanoparticle Cluster Arrays
Sanghamitra Dinda A B , Fung Ling Yap B , Vignesh Suresh C , Raju Kumar Gupta D , Debajyoti Das A and Sivashankar Krishnamoorthy B E FA Department of Biotechnology, School of Pharmaceutical Sciences, Siksha O Anushandan University (SOA), Bhubaneswar, 751030, India.
B Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602, Singapore.
C Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
D Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
E Nanomaterials Unit, Science and Analysis of Materials (SAM) Department, Centre de Recherche Public Gabriel Lippmann, 41, Rue du Brill, Belvaux, 4422, Luxembourg.
F Corresponding author. Email: krishnam@lippmann.lu
Australian Journal of Chemistry 66(9) 1034-1038 https://doi.org/10.1071/CH13222
Submitted: 30 April 2013 Accepted: 5 July 2013 Published: 5 August 2013
Abstract
We analysed sensitivity of high-density arrays of self-assembled gold nanoparticle clusters towards trace analyte detection and quantitative determination by surface enhanced Raman spectroscopy (SERS) employing an aromatic thiol as probe molecule. Periodic nanoscale arrays of gold nanoparticle clusters consisting of an average of 18 nanoparticles per cluster, and exhibiting mean inter-particle and inter-cluster separations below 10 nm were prepared using electrostatic self-assembly on block copolymer templates. The concentration dependent scaling of SERS intensities and the lowest detection limits on the cluster arrays on silicon substrate was probed using 1-naphthalenethiol (NT) as test molecule. The substrates show a detection limit of 10 nM along with high sensitivity to changes in NT concentration, which we attribute to high density of hot-spots uniformly organised across the surface. The capability for facile realisation of such arrays without a clean room environment or expensive tools makes the approach suitable for adoption for economic and high-performing SERS sensors.
References
[1] K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSitrg%3D&md5=6af18c22489297c9f869643d1530cc14CAS | 17067281PubMed |
[2] K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, J. Popp, Anal. Bioanal. Chem. 2008, 390, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgurbM&md5=72441a3dae15b07430b2b6799b96a7d0CAS | 18000657PubMed |
[3] M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang, R. Narayanan, Chem. Soc. Rev. 2008, 37, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOksb0%3D&md5=e059c171423a6b83c53ba57c4559bb70CAS | 18443685PubMed |
[4] A. E. Grow, L. L. Wood, J. L. Claycomb, P. A. Thompson, J. Microbiol. Methods 2003, 53, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlWru7Y%3D&md5=5a8d83d8204354b7de31e264cdcfc0ccCAS | 12654493PubMed |
[5] X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, Z. Q. Tian, Anal. Bioanal. Chem. 2009, 394, 1729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOgs7o%3D&md5=481aa983d744ca6d3e11e8eb995873adCAS | 19381618PubMed |
[6] R. P. Van Duyne, Phys. Chem. Chem. Phys. 2012, 15, 1.
[7] L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, Proc. Natl. Acad. Sci. USA 2006, 103, 13300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVajsrg%3D&md5=2bfa1f6764bae089f89bed123f6990aeCAS | 16938832PubMed |
[8] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2008, 130, 12616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOqtLjM&md5=4ff4fbe4f03e890682d37685d5ef6a8eCAS | 18761451PubMed |
[9] A. Gopinath, S. V. Boriskina, B. M. Reinhard, L. Dal Negro, Opt. Express 2009, 17, 3741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFCrsL0%3D&md5=aa2c25ae8b6bb53e26b867bd7cc45165CAS | 19259215PubMed |
[10] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, Phys. Rev. Lett. 2005, 94, 017402.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2FntVCrsA%3D%3D&md5=1c1de7030c68696d78a533a2367522c6CAS | 15698131PubMed |
[11] Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, J. P. Zhang, Langmuir 2009, 25, 4708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVSjsrg%3D&md5=49bffc6bd8281fd77b5d2f7872ccd8b6CAS | 19366228PubMed |
[12] C. Ruan, G. Eres, W. Wang, Z. Zhang, B. Gu, Langmuir 2007, 23, 5757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFyitr0%3D&md5=1724f02e65aceb5eb0b8547f3a3df1aeCAS | 17425344PubMed |
[13] B. L. Broglin, A. Andreu, N. Dhussa, J. Heath, J. Gerst, B. Dudley, D. Holland, M. El-Kouedi, Langmuir 2007, 23, 4563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisF2hsrc%3D&md5=c2ef70efc331843f9f7913beaa813a5bCAS | 17346064PubMed |
[14] F. L. Yap, S. Krishnamoorthy, J. Mater. Chem. 2010, 20, 10211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2nsr3L&md5=ce9c2c4394b7c5560f7c9fcf6e142d67CAS |
[15] J. Lu, D. Chamberlin, D. A. Rider, M. Z. Liu, I. Manners, T. P. Russell, Nanotechnology 2006, 17, 5792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFait7g%3D&md5=f8026c456740c4605b5209052ea7202fCAS |
[16] Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gosele, S. Christiansen, D. H. Kim, M. Steinhart, Nano Lett. 2009, 9, 2384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtF2rsb4%3D&md5=a4cffe842beee3eae466aa10791349e6CAS | 19459615PubMed |
[17] A. Sánchez-Iglesias, P. Aldeanueva-Potel, W. Ni, J. Pérez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, B. N. Mbenkum, L. M. Luis, M. Liz-Marzán, Nano Today 2010, 5, 21.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Krishnamoorthy, S. Krishnan, P. Thoniyot, H. Y. Low, ACS Appl. Mater. Interfaces 2011, 3, 1033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlOmtb8%3D&md5=c4c12e1de966ca49af3b14379602b229CAS | 21375254PubMed |
[19] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVejt7g%3D&md5=030e192ac17a16d8649fa4a52b15d986CAS | 18497851PubMed |
[20] R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, H. Fenniri, J. Phys. Chem. C 2007, 111, 6720.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Oqtb4%3D&md5=e3d84ece2149074858ead1eb2b82c83cCAS |
[21] F. L. Yap, P. Thoniyot, S. Krishnan, S. Krishnamoorthy, ACS Nano 2012, 6, 2056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1akt74%3D&md5=583391048706b5bcb2b25392f5a9de5aCAS | 22332718PubMed |
[22] E. C. Le Ru, P. G. Etchegoin, M. Meyer, J. Chem. Phys. 2006, 125, 204701.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jgvVGrtg%3D%3D&md5=8335ea273b4455898fdabe7f01da046eCAS | 17144717PubMed |
[23] E. C. Le Ru, E. Blackie, M. Meyer, P. G. Etchegoin, J. Phys. Chem. C 2007, 111, 13794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlamu74%3D&md5=b57d886e9072ab39d7847c730cc71e72CAS |
[24] L. Guerrini, D. Graham, Chem. Soc. Rev. 2012, 41, 7085.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOnurfP&md5=234afba34e60ec9a60b64eab667bb8f6CAS | 22833008PubMed |
[25] S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, R. P. Van Duyne, Phys. Chem. Chem. Phys. 2013, 15, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmtbbE&md5=97ed7d90cad7ffea8ec12b6d4fb606d2CAS | 23042160PubMed |
[26] R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, Analyst (Lond.) 2004, 129, 1251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgtLjO&md5=bf703950465f459ac589f24b49518fc9CAS |
[27] O. Peron, E. Rinnert, T. Toury, M. L. De La Chapelle, C. Compere, Analyst (Lond.) 2011, 136, 1018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVCrtb4%3D&md5=acc7e11012b96603da0f12b9938c335eCAS |