Coordination Assemblies of CoII, NiII, ZnII, and CuII with 3,3′,4,4′-Biphenyltetracarboxylic Acid and Three Positional Isomeric Ligands
Wei Luo A , Di Yao A , Haiye Li A , Fuping Huang A B , Qing Yu A and Hedong Bian A BA Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Department of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin 541004, China.
B Corresponding authors. Email: huangfp2010@163.com; gxnuchem312@yahoo.com.cn
Australian Journal of Chemistry 66(11) 1378-1385 https://doi.org/10.1071/CH13183
Submitted: 17 April 2013 Accepted: 4 July 2013 Published: 15 August 2013
Abstract
Eight different complexes with three positional isomeric dipyridyl ligands (3,3′-Hbpt, 3,4′-Hbpt, and 4,4′-Hbpt) (here, 3,3′-Hbpt = 1H-3,5-bis(3-pyridyl)-1,2,4-triazole, 3,4′-Hbpt = 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole, and 4,4′-Hbpt = 1H-3,5-bis(4-pyridyl)-1,2,4-triazole), as well as 3,3′,4,4′-biphenyltetracarboxylic acid (H4bptc), namely, {[M(bptc)0.5(3,3′-Hbpt)(H2O)2]·H2O}n (M = Co (1), M = Ni (2)), {[Zn2(bptc)(3,3′-Hbpt)2]·3H2O}n (3), [Co(bptc)0.5(3,4′-Hbpt)(H2O)]n (4), [Ni(bptc)0.5(3,4′-Hbpt)2(H2O)2]n (5), {[Cu(bptc)0.5(3,4′-Hbpt)(H2O)]·H2O}n (6), and {[M(bptc)0.5(4,4′-Hbpt)2(H2O)]·4H2O}n (M = Co (7), and Ni (8)) were synthesised and characterised by single-crystal X-ray diffraction. The crystallographic analysis demonstrates that bptc influences the MII (M = Co, Ni, Cu, and Zn) ions to form 2D layers, which are further connected via the isomeric bpt connectors, leading to many types of coordination polymers, such as 2D layers(for 1–3, 5), 3D four-connected nets with a short Schläfli symbol of (64.82) (for 4, 6), and 3D four-connected nets with a short Schläfli symbol of (64.82)(5.63.72)0.5 (for 7–8). This work demonstrates that the isomeric effects of the bpt ligands influence the construction of these frameworks. The thermal stability of complexes 1–6 was investigated.
References
[1] (a) T. Tao, X. X. Wang, Y. N. Wang, Z. Y. Lu, W. Huang, Inorg. Chem. Commun. 2013, 31, 62.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWmurk%3D&md5=2cb71d4183f4fdaf35f1442f8424cbc3CAS |
(b) Z. G. Gu, H. C. Fang, P. Yin, L. Tong, Y. Ying, S.-J. Hu, W. S. Li, Y. P. Cai, Cryst. Growth Des. 2011, 11, 2220.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. M. Lin, W. B. Chen, X. M. Lin, A. H. Lin, C. Y. Ma, W. Dong, C.E. Tian, Chem. Commun. 2011, 2402.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. K. Gale, C. Jeffryes, T. Gutu, J. Jiao, C. H. Chang, G. L. J. Rorrer, Mater. Chem. 2011, 21, 10658.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. Z. Wang, D. R. Zhu, Y. Xu, J. Yang, X. Shen, J. Zhou, N. Fei, X. K. Ke, L. M. Peng, Cryst. Growth Des. 2010, 10, 887.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) A. Aijaz, E. C. Saudo, P. K. Bharadwaj, Cryst. Growth Des. 2011, 11, 1122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVWktrw%3D&md5=1aff3eb6a387a2d0c6b3d9e1bb7b634fCAS |
(b) J. Y. Lee, C. Y. Chen, H. M. Lee, E. Passaglia, F. Vizza, W. Oberhauser, Cryst. Growth Des. 2011, 11, 1230.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. M. Kirillov, Coord. Chem. Rev. 2011, 255, 1603.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottarod, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 2010, 254, 487.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Jarzab, M. Lu, H. T. Nicolai, P. W. M. Blom, M. A. Loi, Soft Matter 2011, 7, 1702.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Y. Gong, T. Wu, P. G. Jiang, J. H. Lin, Y. X. Yang, Inorg. Chem. 2013, 52, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVKk&md5=9e8d9327c250df268ae9c89180964ebfCAS | 23276292PubMed |
(b) S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application 2009 (Royal Society of Chemistry: Cambridge).
(c) W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Y. Robin, K. M. Fromm, Coord. Chem. Rev. 2006, 250, 2127.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Tiekink, J. J. Vittal, Frontiers in Crystal Engineering 2006 (John Wiley: Hoboken, NJ).
[4] (a) T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Roger, M. J. Zaworkto, Angew. Chem. Int. Ed. Engl. 1997, 36, 972.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVCkt7o%3D&md5=810654df0687e5fff475455202f9b1deCAS |
(b) R. W. Saalfrank, I. Bernt, M. M. Chowdhury, F. Hammpel, G. B. M. Vaughan, Chemistry 2001, 7, 2765.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) G. Zhang, G. Yang, Q. Chen, J.-S. Ma, Cryst. Growth Des. 2005, 5, 661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns12rtr0%3D&md5=1b01ab8a06c586199608f671bc9a1a61CAS |
(b) N. Matsumoto, Y. Motoda, T. Matsuo, T. Nakashima, N. Re, F. Dahan, J. P. Tuchagues, Inorg. Chem. 1999, 38, 1165.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Pan, X. Y. Huang, J. Li, Y. G. Wu, N. W. Zheng, Angew. Chem. Int. Ed. 2000, 39, 527.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) D. F. Sun, R. Cao, Y. Q. Sun, W. H. Bi, D. Q. Yuan, Q. Shi, X. Li, Chem. Commun. 2003, 1528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFGisrk%3D&md5=43e92f515f6552300cdf8888709a93d1CAS |
(b) S. J. Dalgarno, M. J. Hardie, C. L. Raston, Cryst. Growth Des. 2004, 4, 227.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Masaoka, D. Tanaka, Y. Nakanishi, S. Kitagawa, Angew. Chem. Int. Ed. 2004, 43, 2530.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, M. J. Rosseinsky, Acc. Chem. Res. 2005, 38, 273.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) M. J. Zaworotko, Nature 2008, 451, 410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGnsLg%3D&md5=101fa6864d4d6b84e037d40bfed0ef7eCAS | 18216843PubMed |
(b) M. Dincă, J. R. Long, Angew. Chem. Int. Ed. 2008, 47, 6766.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Henke, R. A. Fischer, J. Am. Chem. Soc. 2011, 133, 2064.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) H. Arora, F. Lloret, R. Mukherjee, Inorg. Chem. 2009, 48, 1158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtValtw%3D%3D&md5=0c3d28a2c2e613921e098fad9cd02765CAS | 19166370PubMed |
(b) H. Chun, H. Jung, J. Seo, Inorg. Chem. 2009, 48, 2043.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Chang, A.-S. Zhang, T.-L. Hu, X.-H. Bu, Cryst. Growth Des. 2009, 9, 4840.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Kumagai, M. A. Tanaka, K. Inoue, K. Takahashi, H. Kobayashi, S. Vilminot, M. Kurmoo, Inorg. Chem. 2007, 46, 5949.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) Y. B. Dong, J. P. Ma, R. Q. Huang, F. Z. Liang, M. D. Smith, Dalton Trans. 2003, 1472.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1Ciurg%3D&md5=d884366afe459f87ecb101e5f45ee9aeCAS |
(b) G. Mahmoudi, A. Morsali, CrystEngComm 2007, 9, 1062.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) M. Du, Y.-M. Guo, S.-T. Chen, X.-H. Bu, S. R. Batten, J. Ribas, S. Kitagawa, Inorg. Chem. 2004, 43, 1287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVegtw%3D%3D&md5=977eb34ebdb15f9a8f2aa8668aec005bCAS | 14966963PubMed |
(b) M. Du, X. J. Jiang, X. J. Zhao, Inorg. Chem. 2007, 46, 3984.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Huang, M. Du, H. B. Song, X. H. Bu, Cryst. Growth Des. 2004, 4, 71.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) Y. B. Dong, J. Y. Cheng, H. Y. Wang, R. Q. Huang, B. Tang, M. D. Smith, H. C. zur Loye, Chem. Mater. 2003, 15, 2595.
(b) M. Du, X. J. Jiang, X. J. Zhao, H. Cai, J. Ribas, Eur. J. Inorg. Chem. 2006, 1245.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. B. Dong, J.-P. Ma, M. D. Smith, R. Q. Huang, B. Tang, D. Z. Chen, H. C. zur Loye, Solid State Sci. 2002, 4, 1313.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Rogers, M. J. Zaworotko, Angew. Chem. Int. Ed. Engl. 1997, 36, 972.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVCkt7o%3D&md5=810654df0687e5fff475455202f9b1deCAS |
(b) L. Carlucci, G. Ciani, P. Macchi, D. M. Proserpio, Chem. Commun. 1998, 1837.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. V. K. Sharma, R. D. Rogers, Chem. Commun. 1999, 83.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) M. Du, X. J. Jiang, X. J. Zhao, Chem. Commun. 2005, 5521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2rur3M&md5=a031e6ea814dbd48af9456f0883a846eCAS |
(b) M. Du, X. J. Jiang, X. J. Zhao, Inorg. Chem. 2006, 45, 3998.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Du, Z. H. Zhang, Y. P. You, X. J. Zhao, CrystEngComm 2008, 10, 306.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. J. Jiang, J. H. Guo, M. Du, J. S. Li, Polyhedron 2009, 28, 3759.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. F. Xie, S. P. Chen, Z. Q. Xia, S. L. Gao, Polyhedron 2009, 28, 679.
| Crossref | GoogleScholarGoogle Scholar |
(f) X. He, J.-J. Liu, H.-M. Guo, M. Shao, M.-X. Li, Polyhedron 2010, 29, 1062.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Du, X. J. Jiang, X. J. Zhao, Inorg. Chem. 2007, 46, 3984.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) F.-P. Huang, J.-L. Tian, G. J. Chen, D. D. Li, W. Gu, X. Liu, S. P. Yan, D. Z. Liao, P. Cheng, CrystEngComm 2010, 12, 1269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVyks7k%3D&md5=87d2732182778db99ee2f01d8c38f92fCAS |
(b) F.-P. Huang, Q. Zhang, Q. Yu, H. D. Bian, H. Liang, S. P. Yan, D. Z. Liao, P. Cheng, Cryst. Growth Des. 2012, 12, 1890.
| Crossref | GoogleScholarGoogle Scholar |
(c) F.-P. Huang, H. Y. Li, Q. Yu, H. D. Bian, J.-L. Tian, S. P. Yan, D. Z. Liao, P. Cheng, CrystEngComm 2012, 14, 4756.
| Crossref | GoogleScholarGoogle Scholar |
[15] W. Wei, S. P. Chen, Q. Wei, G. Xie, Q. Yang, S. L. Gao, Microporous Mesoporous Mater. 2012, 156, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1Wjtr0%3D&md5=9de6d6a7e71c13eedb10d11dac6c02acCAS |
[16] (a) X. L. Sun, Y. Qi, Y. X. Che, S. R. Batten, J. M. Zheng, Cryst. Growth Des. 2009, 9, 2995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kmsro%3D&md5=6b8cc9178be5dbf88e44b90bcb392231CAS |
(b) X. L. Wang, C. Qi, E. B. Wang, Cryst. Growth Des. 2006, 6, 439.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. J. Deng, N. Zhang, W. M. Xiao, C. Chen, Inorg. Chem. Commun. 2009, 12, 157.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. Du, C. P. Li, C. S. Liu, S. M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=d79bc151315883d4a0f809ab54a892d8CAS |
[18] N. N. Vyatsheslav, V. Z. Nikolay, Z. V. Sergey, Arkivoc 2005, 4, 208.
| Crossref | GoogleScholarGoogle Scholar |
[19] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
| 1:CAS:528:DyaK3cXksFSgsrc%3D&md5=bc20849932b7e57a5cb5466daf7e80ccCAS |
[20] G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution 1997 (University of Gottingen: Gottingen, Germany).