Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

The Effect of Different Clay Dispersion Methods on the Properties of Polyurethane/Clay Nanocomposites

Sau Leng Sin A , Jatin Nitin Kumar A , Hui Ru Tan A , Chaobin He A , Ye Liu A and Jianwei Xu A B
+ Author Affiliations
- Author Affiliations

A Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602.

B Corresponding author. Email: jw-xu@imre.a-star.edu.sg

Australian Journal of Chemistry 66(9) 1039-1047 https://doi.org/10.1071/CH13145
Submitted: 5 April 2013  Accepted: 14 July 2013   Published: 1 August 2013

Abstract

Polyurethane/clay (PU/clay) nanocomposites were synthesised using polymerisation and dispersion blending methods. The intercalation and exfoliation properties of the PU/clay nanocomposites were investigated by X-ray diffraction and transmission electron microscope. Clay intercalation of polymerised PU/nanocomposites was achieved and the interlayer spacing of clay was greatly enlarged from 17 Å to ~30 Å. Expansion in d-spacing was also observed for PU/clay nanocomposites prepared using dispersion methods. PU/clay nanocomposites prepared from dispersion of clay particles in the prepolymer matrix, followed by chain extension reaction, showed much high molecular weight and significant improvement in mechanical properties as compared with PU/clay nanocomposites produced using polymerisation or a simple high speed blending method in which clay was blended into the PU matrix. For PU/clay nanocomposites prepared using the blending method, high speed dispersion of 2 % clay in PU resulted in approximately a two-fold increase in the Young’s modulus. Further increase in the clay loading from 2 to 6 % made the corresponding nanocomposite polymer films more rigid and stiffer. This study shows that PU/clay nanocomposite properties are highly dependent on the preparation methods and provides useful guidelines for the future design and preparation of PU/clay nanocomposites.


References

[1]  M. M. Rahman, H. D. Kim, W. K. Lee, J. Appl. Polym. Sci. 2008, 110, 3697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGltbvP&md5=39ba0e3e9670ce56ef90f6e208da78c6CAS |

[2]  Z. B. Xu, X. L. Tang, A. J. Gu, Z. P. Fang, L. F. Tong, J. Appl. Polym. Sci. 2007, 105, 2988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFakt7w%3D&md5=0d43ed05e823110ac7f1c46a4df39dbfCAS |

[3]  S. B. Chen, Q. H. Wang, T. M. Wang, Mater. Chem. Phys. 2011, 130, 680.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCls7%2FJ&md5=e9fb0189d94899c71331fad5218ced34CAS |

[4]  D. Chen, Y. H. Xu, Y. L. Zang, S. P. Su, Polym. Adv. Technol. 2011, 22, 1919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2rtbrL&md5=fc497d3089e466b60ebc8232a9895d76CAS |

[5]  M. Kannan, S. S. Bhagawan, T. Jose, S. Thomas, K. Joseph, Polym. Eng. Sci. 2010, 50, 1878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWmsb7L&md5=132ff8c3ba4b40f499548f34258384a1CAS |

[6]  Z. Wang, T. Pinnavaia, Chem. Mater. 1998, 10, 1820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFWjtLo%3D&md5=ee805a5f294ccd3171197ab6c60e2df8CAS |

[7]  M. A. Bahattab, J. Donate-Robles, V. Garcia-Pacios, J. M. Martin-Martinez, Int. J. Adhes. Adhes. 2011, 31, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyrs7zM&md5=6fb7eaf0837fb0e1e603acb9be341f89CAS |

[8]  J. V. Patel, S. D. Desai, V. K. Sinha, J. Sci. Ind. Res. (India) 2004, 63, 259.
         | 1:CAS:528:DC%2BD2cXjtVajurk%3D&md5=4247c254c6fc3cc9225e48ee3a211e59CAS |

[9]  S. Subramani, J. Y. Lee, J. H. Kim, I. W. Cheong, Compos. Sci. Technol. 2007, 67, 1561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVaqtrY%3D&md5=a4b5d4219fe003b34f8c778843f40ec3CAS |

[10]  W. N. Kim, W. J. Seo, J. S. Han, U.S. Patent 7592387 B2 2009.

[11]  P. Ni, Q. Wang, J. Li, J. Suo, S. Li, J. Appl. Polym. Sci. 2006, 99, 6.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OgsbnM&md5=940a28c526f35f8bd13d3021323ec599CAS |

[12]  M. Zanetti, S. Lomakin, G. Camino, Macromol. Mater. Eng. 2000, 279, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVygu74%3D&md5=14a4bd49c8fdb7e6c39659775d19874dCAS |

[13]  N. Ogata, S. Kawakage, T. J. Ogihara, J. Appl. Polym. Sci. 1997, 66, 573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1ymsbo%3D&md5=48030a980c061b864b297f84945df5b8CAS |

[14]  A. Akelah, M. J. Moet, Mater. Sci. 1996, 31, 3589.
         | 1:CAS:528:DyaK28XksVSisrk%3D&md5=be7181ea7490ca9dc3f54e3b71d332c9CAS |

[15]  M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, H. Tateyama, Polymer 2000, 41, 3887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFKltLs%3D&md5=1075dce48979f25e523b03ccfb5d9b4cCAS |

[16]  T. Liu, W. C. Tjiu, C. He, S. S. Na, T. S. Chung, Polym. Int. 2004, 53, 392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFWnsr0%3D&md5=693e2f6b474e211078ea681dd5b6e8c0CAS |

[17]  R. A. Vaia, E. Giannelis, Macromolecules 1997, 30, 7990.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVSksLs%3D&md5=c03dd0db895f20196b04008ada9bd851CAS |

[18]  A. Pattanayak, S. C. Jana, Polymer 2005, 46, 3275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlKitL4%3D&md5=4f20036f721e37c59fc673232ae78539CAS |

[19]  A. Pattanayak, S. C. Jana, Polymer 2005, 46, 3394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlKitb0%3D&md5=412b7d5b4ff5f76ce2ea5196b61cde1fCAS |

[20]  A. Pattanayak, S. C. Jana, Polymer 2005, 46, 5183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFSlurg%3D&md5=11b74cd8f0efafd6a5275f968b32216fCAS |

[21]  H. Wang, V. Chen, J. Appl. Polym. Sci. 2007, 105, 1581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntl2gu7g%3D&md5=78059ed8c9b1eea514365719654aebc3CAS |

[22]  X. Cao, J. L. Lee, T. Widya, C. Macosko, Polymer 2005, 46, 775.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Sgsg%3D%3D&md5=bcf0be3d849f3f4cf6b8230c08fd0d85CAS |

[23]  P. Mondal, D. V. Khakhar, J. Appl. Polym. Sci. 2007, 103, 2802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVyitLo%3D&md5=07776bb628899380a034127c189e1a8cCAS |

[24]  J. E. Kresta, J. Wu, R. M. Crooker, U.S. Patent 6518324 2003.

[25]  ASTM D2572.

[26]  A. Cheng, S. Wu, D. Jiang, F. Wu, J. Shen, Colloid Polym. Sci. 2006, 284, 1057.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmslait78%3D&md5=10f4cb2911c43ee5bd98e826308b30d0CAS |

[27]  M. Szycher, in Szycher’s Handbook of Polyurethanes, 2nd edn (Ed. M. Szycher) 2013, Ch. 11, pp. 363–365 (CRC Press: Boca Raton, FL).

[28]  K. Pielichowski, J. Njuguna, Thermal Degradation of Polymeric Materials 2005, Ch. 5, pp. 79–82 (Rapra Technology Limited: Shropshire, UK).

[29]  A. B. Morgan, J. W. Gilman, J. Appl. Polym. Sci. 2003, 87, 1329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1ei&md5=4faaec1b1871751120bb5f13f43320a6CAS |