Applications of Mass Spectrometry in Proteomics
Izabela Sokolowska A , Armand G. Ngounou Wetie A , Alisa G. Woods A B and Costel C. Darie A CA Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA.
B Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, Plattsburgh, NY 12901, USA.
C Corresponding author. Email: cdarie@clarkson.edu
Izabela Sokolowska received her M.Sc. in biotechnology at Warsaw University of Life Sciences (2009) and currently she is a Ph.D. student in the Biochemistry and Proteomics Group at Clarkson University. Her research is focused on the characterisation of newly discovered protein tumour differentiation factors (TDFs) and mass spectrometry-based approaches in the analysis of proteins. |
Armand G. Ngounou Wetie received his diploma in biotechnology (2008) from the Mannheim University of Applied Sciences, Germany, and a Master of Science degree in molecular biotechnology from the Technical University of Munich (TUM), Germany. Currently, Armand is a Ph.D. student in the Department of Chemistry and Biomolecular Science at Clarkson University (Potsdam, New York), where he is working on understanding the mode of action of the tumour differentiation factor (TDF) protein. |
Dr Alisa Woods is a neurobiologist and mental health counsellor, and currently Research Assistant Professor in the Department of Chemistry and Biomolecular Science at Clarkson University, as well as Counsellor and Neuropsychology Researcher at the Neuropsychology Clinic/Psychoeducation Services, SUNY Plattsburgh, New York. The long-term goal of her research is to understand the connections between biochemistry and behaviour in neurodevelopmental disorders, including autism and ADHD. She is particularly interested in the identification of protein biomarkers for diagnosis and prognosis of neurodevelopmental disorders, and in their use for monitoring the psychotherapeutic/behavioural treatment of developmental disorders. |
Dr Costel C. Darie is a biochemist and currently Assistant Professor and leader of the Biochemistry and Proteomics Group within the Department of Chemistry and Biomolecular Science at Clarkson University. He received his B.S. and M.S. in biochemistry from Iasi, Romania, and his Ph.D. in biochemistry from Freiburg, Germany. Dr Darie's main research interests are in new proteomics approaches for biomarker discovery and identification of post-translational modifications and protein–protein interactions. His research is also focused on the investigation of one particular protein – the tumour differentiation factor protein. |
Australian Journal of Chemistry 66(7) 721-733 https://doi.org/10.1071/CH13137
Submitted: 27 March 2013 Accepted: 14 May 2013 Published: 3 June 2013
Abstract
Characterisation of proteins and whole proteomes can provide a foundation to our understanding of physiological and pathological states and biological diseases or disorders. Constant development of more reliable and accurate mass spectrometry (MS) instruments and techniques has allowed for better identification and quantification of the thousands of proteins involved in basic physiological processes. Therefore, MS-based proteomics has been widely applied to the analysis of biological samples and has greatly contributed to our understanding of protein functions, interactions, and dynamics, advancing our knowledge of cellular processes as well as the physiology and pathology of the human body. This review will discuss current proteomic approaches for protein identification and characterisation, including post-translational modification (PTM) analysis and quantitative proteomics as well as investigation of protein–protein interactions (PPIs).
References
[1] P. James, Q. Rev. Biophys. 1997, 30, 279.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1Ojs70%3D&md5=0030abd9fab972bb17b78a71e84aa01aCAS | 9634650PubMed |
[2] B. Domon, R. Aebersold, Science 2006, 312, 212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlOjs7w%3D&md5=0e8de891e02b90808152dfdae10b0475CAS | 16614208PubMed |
[3] G. Zhang, R. S. Annan, S. A. Carr, T. A. Neubert, Current Protocols in Protein Science 2010, 62, 16.1.1.
| Crossref | GoogleScholarGoogle Scholar |
[4] N. Rifai, M. A. Gillette, S. A. Carr, Nat. Biotechnol. 2006, 24, 971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVygtL8%3D&md5=1d3eba7434a49c7d465ecf8ac4875098CAS | 16900146PubMed |
[5] P. Lescuyer, D. Hochstrasser, T. Rabilloud, J. Proteome Res. 2007, 6, 3371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotF2gtrk%3D&md5=2cdd134bd3a36240b8bdea88463fd5faCAS | 17655344PubMed |
[6] R. Aebersold, D. R. Goodlett, Chem. Rev. 2001, 101, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlGlug%3D%3D&md5=87e6af112ebe02b57828e1e938b25132CAS | 11712248PubMed |
[7] M. Mann, R. C. Hendrickson, A. Pandey, Annu. Rev. Biochem. 2001, 70, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVehtL4%3D&md5=ee2cbebdef952640cb65ec1fbeaadd89CAS | 11395414PubMed |
[8] A. Pandey, M. Mann, Nature 2000, 405, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksV2jt74%3D&md5=d6295523cb60b8e18686524ee73685edCAS | 10866210PubMed |
[9] M. Karas, F. Hillenkamp, Anal. Chem. 1988, 60, 2299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVGmu7g%3D&md5=c10f31da104cb80a0abdba1a19eaec07CAS | 3239801PubMed |
[10] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Science 1989, 246, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFWhs7w%3D&md5=4c26504e52522f5a7c384534756a1063CAS | 2675315PubMed |
[11] G. L. Wright, L. H. Cazares, S. M. Leung, S. Nasim, B. L. Adam, T. T. Yip, P. F. Schellhammer, L. Gong, A. Vlahou, Prostate Cancer P. D. 1999, 2, 264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFaktrw%3D&md5=f521b7ff57d70c8fa80cde1b864aaeb1CAS |
[12] N. Tang, P. Tornatore, S. R. Weinberger, Mass Spectrom. Rev. 2004, 23, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVCisw%3D%3D&md5=1a9a93f5f79dacda246aae344ff69b42CAS | 14625891PubMed |
[13] S. R. Weinberger, E. A. Dalmasso, E. T. Fung, Curr. Opin. Chem. Biol. 2002, 6, 86.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVKqs7c%3D&md5=2bdf9deb8d704421714c323db0ed6270CAS | 11827829PubMed |
[14] H. J. Issaq, T. P. Conrads, D. A. Prieto, R. Tirumalai, T. D. Veenstra, Anal. Chem. 2003, 75, 148A.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFSqsrk%3D&md5=a30b8f8bd4d3d0c865d89dac7f4df66aCAS | 12705580PubMed |
[15] C. Dass, Fundamentals of Contemporary Mass Spectrometry 2007 (Wiley: Hoboken, NJ).
[16] E. Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications 2007, 3rd edn (John Wiley: Hoboken, NJ).
[17] S. Abate, Y. G. Ahn, T. Kind, T. R. Cataldi, O. Fiehn, Rapid Commun. Mass Spectrom. 2010, 24, 1172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVejtLg%3D&md5=ad343855b52ba38a42cc44b074bf4fb3CAS | 20301109PubMed |
[18] A. G. Harrison, Chemical Ionization Mass Spectrometry 1992, 2nd edn (CRC Press: Boca Raton, FL).
[19] L. B. Rivera-Rodriguez, R. Rodriguez-Estrella, J. J. Ellington, J. J. Evans, Environ. Pollut. 2007, 148, 654.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFOhsb4%3D&md5=8d30dc0f51938bb3542abac0f9981bb5CAS | 17240024PubMed |
[20] R. C. Dougherty, Biomed. Mass Spectrom. 1981, 8, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFGrs7w%3D&md5=bdbbdd651fcd31b49156b772c515e1f8CAS | 7025931PubMed |
[21] V. G. Zaikin, J. M. Halket, Eur. J. Mass Spectrom. 2006, 12, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVSlt7c%3D&md5=a8fb0e529a68dec21d288acaba535b3eCAS |
[22] A. G. Marshall, C. L. Hendrickson, G. S. Jackson, Mass Spectrom. Rev. 1998, 17, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFantbk%3D&md5=8bd6fdd4b2fb25859a9ef1972bcdb30fCAS | 9768511PubMed |
[23] S. E. Martin, J. Shabanowitz, D. F. Hunt, J. A. Marto, Anal. Chem. 2000, 72, 4266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFKlt7o%3D&md5=cbcec4b245df90bda7cdc92fb38eb409CAS | 11008759PubMed |
[24] C. E. Parker, M. R. Warren, V. Mocanu, Mass Spectrometry for Proteomics, in Neuroproteomics (Ed. O. Alzate) 2010, Ch. 5 (CRC Press: Boca Raton, FL).
[25] J. R. Yates, C. I. Ruse, A. Nakorchevsky, Annu. Rev. Biomed. Eng. 2009, 11, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmt7fP&md5=98f228d773ebe0807998602f9526ae2cCAS | 19400705PubMed |
[26] R. Aebersold, M. Mann, Nature 2003, 422, 198.
| 1:CAS:528:DC%2BD3sXhvFKgs7s%3D&md5=5bca9334fa0a1d79721bb915fee77311CAS | 12634793PubMed |
[27] F. W. McLafferty, K. Breuker, M. Jin, X. Han, G. Infusini, H. Jiang, X. Kong, T. P. Begley, FEBS J. 2007, 274, 6256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOnsrnK&md5=e3dfafb16a0baa32e965033748514fb9CAS | 18021240PubMed |
[28] W. H. McDonald, J. R. Yates, Curr. Opin. Mol. Ther. 2003, 5, 302.
| 1:CAS:528:DC%2BD3sXmtVWqtLY%3D&md5=679b9f9ea2dff5b535cc76d06bc9b398CAS | 12870441PubMed |
[29] S. Wu, N. M. Lourette, N. Tolic, R. Zhao, E. W. Robinson, A. V. Tolmachev, R. D. Smith, L. Paša-Tolić, J. Proteome Res. 2009, 8, 1347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Oit7c%3D&md5=8fbc334df2793806aaeff6e5af22fd2fCAS | 19206473PubMed |
[30] X. Han, A. Aslanian, J. R. Yates, Curr. Opin. Chem. Biol. 2008, 12, 483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KgsbjP&md5=475248092b87b3c54e9d3d07101d6654CAS | 18718552PubMed |
[31] M. F. Savitski, M. M. Savitski, Methods Mol. Biol. 2010, 673, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlemsLvP&md5=1d361aa7994ec7c5c8fe3c85e0092d49CAS | 20835800PubMed |
[32] R. G. Spiro, Glycobiology 2002, 12, 43R.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVyhtrY%3D&md5=4082f6eb27e7f01b468e01c2516928beCAS | 12042244PubMed |
[33] K. Marino, J. Bones, J. J. Kattla, P. M. Rudd, Nat. Chem. Biol. 2010, 6, 713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOhtrfO&md5=45a3326eeb4689ac371b0190dbdd7cfeCAS | 20852609PubMed |
[34] E. K. Read, J. T. Park, K. A. Brorson, Biotechnol. Appl. Biochem. 2011, 58, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOlu7%2FO&md5=78d76bd441c12c89dd6c116723c38939CAS | 21838794PubMed |
[35] S. Kamoda, K. Kakehi, Electrophoresis 2008, 29, 3595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SntrjP&md5=f1c03f18c1726942c2e8702fc2863a86CAS | 18803221PubMed |
[36] N. Leymarie, J. Zaia, Anal. Chem. 2012, 84, 3040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislSqu74%3D&md5=52c4b9b25331421f2b63eefab02bae5fCAS | 22360375PubMed |
[37] S. Pan, R. Chen, R. Aebersold, T. A. Brentnall, Mol. Cell Proteomics 2011, 10, R110.003251.
| 20736408PubMed |
[38] W. Morelle, J. C. Michalski, Nat. Protoc. 2007, 2, 1585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahur3O&md5=dd1d1616530b58f467e8f7c72af4b23fCAS | 17585300PubMed |
[39] M. Wuhrer, M. I. Catalina, A. M. Deelder, C. H. Hokke, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2007, 849, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFeisLs%3D&md5=3644a2f10f596066ea3b1af3961a964aCAS |
[40] Y. Mechref, M. Madera, M. V. Novotny, Methods Mol. Biol. 2008, 424, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslOgtbo%3D&md5=c70e0143f146dcb5265b6a2f3b352be1CAS | 18369876PubMed |
[41] M. R. Bond, J. J. Kohler, Curr. Opin. Chem. Biol. 2007, 11, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFOhs7c%3D&md5=e9b3bc6427f462db8f1c66b875ae1b4eCAS | 17174139PubMed |
[42] M. K. Tarrant, P. A. Cole, Annu. Rev. Biochem. 2009, 78, 797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Ghu70%3D&md5=653ead905a8db91fea8e4289379fab89CAS | 19489734PubMed |
[43] P. Blume-Jensen, T. Hunter, Nature 2001, 411, 355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVSjsr0%3D&md5=e13faaecc71f80ee5f520e6fb146a00cCAS | 11357143PubMed |
[44] P. Cohen, Eur. J. Biochem. 2001, 268, 5001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1els70%3D&md5=3d0cf465cb65373255d1c4ca259bd31dCAS | 11589691PubMed |
[45] N. Badiola, M. Suarez-Calvet, A. Lleo, CNS Neurol. Disord. Drug Targets 2010, 9, 727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFarsb3E&md5=d2e5724f4ec913d50157171f07bccd02CAS | 20942789PubMed |
[46] P. Cohen, Nat. Rev. Drug Discov. 2002, 1, 309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGmtr8%3D&md5=23727d22cdac12d484f52eb82bad05cdCAS | 12120282PubMed |
[47] K. Strebhardt, Nat. Rev. Drug Discov. 2010, 9, 643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVCktrw%3D&md5=1cebd38d96fcbeb7d8c4c4826ec5520dCAS | 20671765PubMed |
[48] J. C. Le Blanc, J. W. Hager, A. M. Ilisiu, C. Hunter, F. Zhong, I. Chu, Proteomics 2003, 3, 859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlSmurw%3D&md5=529cb17b5fed93da7d044d6e50395ef4CAS | 12833509PubMed |
[49] R. D. Unwin, J. R. Griffiths, M. K. Leverentz, A. Grallert, I. M. Hagan, A. D. Whetton, Mol. Cell. Proteomics 2005, 4, 1134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFalsL4%3D&md5=3adf52fb749207da3459f645e82cc71cCAS | 15923565PubMed |
[50] C. F. Xu, Y. Lu, J. Ma, M. Mohammadi, T. A. Neubert, Mol. Cell. Proteomics 2005, 4, 809.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsV2nsrc%3D&md5=a6ac8a2a10d737e1585f0065c5339b17CAS | 15753120PubMed |
[51] L. Beltran, P. R. Cutillas, Amino Acids 2012, 43, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2rsbzI&md5=7835b1c71413cdae6575ed45b71d26b7CAS | 22821267PubMed |
[52] G. L. Corthals, R. Aebersold, D. R. Goodlett, Methods Enzymol. 2005, 405, 66.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Sntro%3D&md5=1f89f93652b1a8a1077ed6caf1f2901dCAS | 16413311PubMed |
[53] J. J. Gorman, T. P. Wallis, J. J. Pitt, Mass Spectrom. Rev. 2002, 21, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislehtQ%3D%3D&md5=65a2beb5e5d3142e1161378189a87eabCAS | 12476442PubMed |
[54] A. McAuley, J. Jacob, C. G. Kolvenbach, K. Westland, H. J. Lee, S. R. Brych, D. Rehder, G. R. Kleemann, D. N. Brems, M. Matsumura, Protein Sci. 2008, 17, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Cqtg%3D%3D&md5=74b104470dcc6c79e5706b6ae238417bCAS | 18156469PubMed |
[55] I. Sokolowska, M. A. Gawinowicz, A. G. Ngounou Wetie, C. C. Darie, Electrophoresis 2012, 33, 2527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sku7jI&md5=79535b10dc93b0d1b05c2b47f29db37fCAS | 22899260PubMed |
[56] I. Sokolowska, A. G. Ngounou Wetie, A. G. Woods, C. C. Darie, J. Lab. Autom. 2012, 17, 408.
| 1:CAS:528:DC%2BC3sXhtV2msbk%3D&md5=67550f2be3900b208f5ec683d5821814CAS | 22885790PubMed |
[57] A. Panchaud, M. Affolter, P. Moreillon, M. Kussmann, J. Proteomics 2008, 71, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslSisrk%3D&md5=b92070cf783fc4c5c5a067d670555b17CAS | 18541471PubMed |
[58] T. Berkelman, Methods Mol. Biol. 2008, 424, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslOgtrc%3D&md5=0f20529e2f030734cf933e71dd6aa8daCAS | 18369851PubMed |
[59] M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, B. Kuster, Anal. Bioanal. Chem. 2007, 389, 1017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyntbfF&md5=fd2d2e133a43e8672ce0543e46300830CAS | 17668192PubMed |
[60] F. Xie, T. Liu, W. J. Qian, V. A. Petyuk, R. D. Smith, J. Biol. Chem. 2011, 286, 25443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFCksbc%3D&md5=080920557d439d8e42a04d0525919222CAS | 21632532PubMed |
[61] S. Pan, R. Aebersold, R. Chen, J. Rush, D. R. Goodlett, M. W. McIntosh, J. Zhang, T. A. Brentnall, J. Proteome Res. 2009, 8, 787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFChsLrK&md5=b2d517f585a217b854b945aa3cd89008CAS | 19105742PubMed |
[62] A. Negishi, M. Ono, Y. Handa, H. Kato, K. Yamashita, K. Honda, M. Shitashige, R. Satow, T. Sakuma, H. Kuwabara, K. Omura, S. Hirohashi, T. Yamada, Cancer Sci. 2009, 100, 514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wrtbg%3D&md5=8b50dd795c163019670f883f4b9b7669CAS | 19154406PubMed |
[63] M. Ono, M. Shitashige, K. Honda, T. Isobe, H. Kuwabara, H. Matsuzuki, S. Hirohashi, T. Yamada, Mol. Cell. Proteomics 2006, 5, 1338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWnsrk%3D&md5=17a2c78dced02e0cd5bf8228eb0fc50cCAS | 16552026PubMed |
[64] H. Liu, R. G. Sadygov, J. R. Yates, Anal. Chem. 2004, 76, 4193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVKiur8%3D&md5=729e25f772b06ac05897d7f24265720fCAS | 15253663PubMed |
[65] W. J. Qian, J. M. Jacobs, D. G. Camp, M. E. Monroe, R. J. Moore, M. A. Gritsenko, S. E. Calvano, S. F. Lowry, W. Xiao, L. L. Moldawer, R. W. Davis, R. G. Tompkins, R. D. Smith, Proteomics 2005, 5, 572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Oiurs%3D&md5=b197e73f6c320f05a3c17143ba91df42CAS | 15627965PubMed |
[66] V. A. Petyuk, N. Jaitly, R. J. Moore, J. Ding, T. O. Metz, K. Tang, M. E. Monroe, A. V. Tolmachev, J. N. Adkins, M. E. Belov, A. R. Dabney, W.-J. Qian, D. G. Camp, R. D. Smith, Anal. Chem. 2008, 80, 693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslyq&md5=cc838cac03f103341e029ca136c684dbCAS | 18163597PubMed |
[67] E. F. Strittmatter, P. L. Ferguson, K. Tang, R. D. Smith, J. Am. Soc. Mass Spectrom. 2003, 14, 980.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvV2rsL8%3D&md5=3ecfc0c2ce940a5445579146d3121271CAS | 12954166PubMed |
[68] R. Zhang, F. E. Regnier, J. Proteome Res. 2002, 1, 139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVKgs7Y%3D&md5=aa152ee2553475e32006d5aca07301f8CAS | 12643534PubMed |
[69] S. E. Ong, L. J. Foster, M. Mann, Methods 2003, 29, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVajsb4%3D&md5=003bec29c7c56c1ab34a4be0e067b53fCAS | 12606218PubMed |
[70] S. Julka, F. Regnier, J. Proteome Res. 2004, 3, 350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFOjtQ%3D%3D&md5=4748094bf32a8570a0f2ab8d6ea129b2CAS | 15253416PubMed |
[71] M. Bronstrup, Expert Rev. Proteomics 2004, 1, 503.
| Crossref | GoogleScholarGoogle Scholar | 15966845PubMed |
[72] S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, S. P. Gygi, Proc. Natl. Acad. Sci. USA 2003, 100, 6940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslOnt7Y%3D&md5=0100c6fd22a31938e90b8254f141abcfCAS | 12771378PubMed |
[73] D. S. Kirkpatrick, S. A. Gerber, S. P. Gygi, Methods 2005, 35, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslWlsr8%3D&md5=4f5eb2f13657d6ea24ce6fa3e35afb99CAS | 15722223PubMed |
[74] S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey, M. Mann, Mol. Cell. Proteomics 2002, 1, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslWhsrk%3D&md5=459d92229042dca5f678d859525b442fCAS | 12118079PubMed |
[75] A. Guo, J. Villen, J. Kornhauser, K. A. Lee, M. P. Stokes, K. Rikova, A. Possemato, J. Nardone, G. Innocenti, R. Wetzel, Y. Wang, J. MacNeill, J. Mitchell, S. P. Gygi, J. Rush, R. D. Polakiewicz, M. J. Comb, Proc. Natl. Acad. Sci. USA 2008, 105, 692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFSmuw%3D%3D&md5=1cdb7323c116ef2448ae10a200d968c6CAS | 18180459PubMed |
[76] M. Kruger, M. Moser, S. Ussar, I. Thievessen, C. A. Luber, F. Forner, S. Schmidt, S. Zanivan, R. Fässler, M. Mann, Cell 2008, 134, 353.
| Crossref | GoogleScholarGoogle Scholar | 18662549PubMed |
[77] S. Zanivan, M. Krueger, M. Mann, Methods Mol. Biol. 2012, 757, 435.
| Crossref | GoogleScholarGoogle Scholar | 21909926PubMed |
[78] S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, R. Aebersold, Nat. Biotechnol. 1999, 17, 994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVelsLs%3D&md5=c25aec369e1236dd1a9843b6feb40249CAS | 10504701PubMed |
[79] T. Muth, D. Keller, S. M. Puetz, L. Martens, A. Sickmann, A. M. Boehm, Proteomics 2010, 10, 1223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFalurw%3D&md5=f5c551fb2f8a0d27cf9a0fa2c708d3baCAS | 20058250PubMed |
[80] P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker, S. Hattan, N. Khainovski, S. Pillai, S. Dey, S. Daniels, S. Purkayastha, P. Juhasz, S. Martin, M. Bartlet-Jones, F. He, A. Jacobson, D. J. Pappin, Mol. Cell. Proteomics 2004, 3, 1154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFartg%3D%3D&md5=90ee08709371859a7f22f308bbc01300CAS | 15385600PubMed |
[81] L. Dayon, A. Hainard, V. Licker, N. Turck, K. Kuhn, D. F. Hochstrasser, P. R. Burkhard, J.-C. Sanchez, Anal. Chem. 2008, 80, 2921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFyisbY%3D&md5=12ed671bf395d7cf64f85f43dd9741a2CAS | 18312001PubMed |
[82] S. W. Holman, P. F. Sims, C. E. Eyers, Bioanalysis 2012, 4, 1763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOht7nK&md5=19e7144cbf79ae7cc517761c1abbf0bfCAS | 22877222PubMed |
[83] A. Wolf-Yadlin, S. Hautaniemi, D. A. Lauffenburger, F. M. White, Proc. Natl. Acad. Sci. USA 2007, 104, 5860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Kgt7w%3D&md5=ca67a854dec51a68efc06fdff8a07a2cCAS | 17389395PubMed |
[84] M. W. Duncan, R. Aebersold, R. M. Caprioli, Nat. Biotechnol. 2010, 28, 659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1aiu70%3D&md5=7fdecf87a853f9954def8be69ed048c1CAS | 20622832PubMed |
[85] T. A. Addona, S. E. Abbatiello, B. Schilling, S. J. Skates, D. R. Mani, D. M. Bunk, C. H. Spiegelman, L. J. Zimmerman, A.-J. L. Ham, H. Keshishian, S. C. Hall, S. Allen, R. K. Blackman, C. H. Borchers, C. Buck, H. L. Cardasis, M. P. Cusack, N. G. Dodder, B. W. Gibson, J. M. Held, T. Hiltke, A. Jackson, E. B. Johansen, C. R. Kinsinger, J. Li, M. Mesri, T. A. Neubert, R. K. Niles, T. C. Pulsipher, D. Ransohoff, H. Rodriguez, P. A. Rudnick, D. Smith, D. L. Tabb, T. J. Tegeler, A. M. Variyath, L. J. Vega-Montoto, Å. Wahlander, S. Waldemarson, M. Wang, J. R. Whiteaker, L. Zhao, N. L. Anderson, S. J. Fisher, D. C. Liebler, A. G. Paulovich, F. E. Regnier, P. Tempst, S. A. Carr, Nat. Biotechnol. 2009, 27, 633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKqurY%3D&md5=d1499b55af915e223049a9b9ede24286CAS | 19561596PubMed |
[86] G. C. Koh, P. Porras, B. Aranda, H. Hermjakob, S. E. Orchard, J. Proteome Res. 2012, 11, 2014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFyjurs%3D&md5=2270dc6347d81d293a5d480ea7bf4141CAS | 22385417PubMed |
[87] J. De Las Rivas, C. Fontanillo, PLOS Comput. Biol. 2010, 6, e1000807.
| Crossref | GoogleScholarGoogle Scholar | 20589078PubMed |
[88] J. Cavanagh, R. Thompson, B. Bobay, L. M. Benson, S. Naylor, Biochemistry 2002, 41, 7859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktV2gsb0%3D&md5=20fef8eb94cddfd158dadaed02f0c952CAS | 12069574PubMed |
[89] J. Wen, T. Arakawa, J. S. Philo, Anal. Biochem. 1996, 240, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1eksbo%3D&md5=6efb4f8b9e748fc7caf8dcb9c367ee9aCAS | 8811899PubMed |
[90] C. L. Mayer, W. K. Snyder, M. A. Swietlicka, A. D. Vanschoiack, C. R. Austin, B. J. McFarland, BMC Res. Notes 2009, 2, 135.
| Crossref | GoogleScholarGoogle Scholar | 19604395PubMed |
[91] S. A. Berkowitz, AAPS J. 2006, 8, E590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2iurnN&md5=a55a9ddc1e74594ab557129683f3bad6CAS | 17025277PubMed |
[92] E. M. Phizicky, S. Fields, Microbiol. Rev. 1995, 59, 94.
| 1:CAS:528:DyaK2MXkvVGmurs%3D&md5=59e1b986b7f1c082f30b1381256fd528CAS | 7708014PubMed |
[93] I. Sokolowska, A. G. Woods, M. A. Gawinowicz, U. Roy, C. C. Darie, J. Biol. Chem. 2012, 287, 1719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlGmug%3D%3D&md5=bc401abead6a94971ba7f615ace294e2CAS | 22130669PubMed |
[94] A. G. Ngounou Wetie, I. Sokolowska, A. G. Woods, U. Roy, J. A. Loo, C. C. Darie, Proteomics 2013, 13, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSmu7k%3D&md5=403ca867a3f1594bbfa3dbd5b8a134e2CAS | 23193082PubMed |
[95] I. Sokolowska, A. G. Woods, M. A. Gawinowicz, U. Roy, C. C. Darie, FEBS J. 2012, 279, 2579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKnurw%3D&md5=02be31291f892a5c9724b1919fcc4c3dCAS | 22613557PubMed |
[96] E. Chautard, M. Fatoux-Ardore, L. Ballut, N. Thierry-Mieg, S. Ricard-Blum, Nucleic Acids Res. 2011, 39, D235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivF2lt7c%3D&md5=b48c8014400cf3fd370cf0e7d9b0bdacCAS | 20852260PubMed |
[97] B. Blagoev, I. Kratchmarova, S. E. Ong, M. Nielsen, L. J. Foster, M. Mann, Nat. Biotechnol. 2003, 21, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFajs7o%3D&md5=838c4d8f57b13a198d25bf325fadff94CAS | 12577067PubMed |
[98] D. Pflieger, F. Gonnet, S. de la Fuente van Bentem, H. Hirt, A. de la Fuente, Mass Spectrom. Rev. 2011, 30, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Siu7w%3D&md5=6a5621b74caa7d98799790cf388e0a43CAS | 21337599PubMed |
[99] B. Suter, S. Kittanakom, I. Stagljar, Curr. Opin. Biotechnol. 2008, 19, 316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtValsL7M&md5=fc9c12ed7a4320e9169a41f7762f37dcCAS | 18619540PubMed |
[100] B. Suter, S. Kittanakom, I. Stagljar, Biotechniques 2008, 44, 681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlWqsrY%3D&md5=13419238b5f917ff2b17815cc7d4a402CAS | 18474045PubMed |
[101] F. Krause, Electrophoresis 2006, 27, 2759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslCnt78%3D&md5=260ddd5f68f6c83d33f329529eebaf65CAS | 16817166PubMed |
[102] H. Schagger, G. von Jagow, Anal. Biochem. 1991, 199, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383lsV2rug%3D%3D&md5=7d2727e614dadb8efc9b218e3fb2c6e3CAS | 1812789PubMed |
[103] L. Sokolova, I. Wittig, H. D. Barth, H. Schagger, B. Brutschy, U. Brandt, Proteomics 2010, 10, 1401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFGnsbg%3D&md5=63d3b119acc4441d9bb2187b165a38a0CAS | 20127694PubMed |
[104] C. C. Darie, K. Deinhardt, G. Zhang, H. S. Cardasis, M. V. Chao, T. A. Neubert, Proteomics 2011, 11, 4514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOnu7bP&md5=ca62d41343e1fd51dcdf8dd64b7aac4eCAS | 21932443PubMed |
[105] A. J. Heck, R. H. Van Den Heuvel, Mass Spectrom. Rev. 2004, 23, 368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Gqsbw%3D&md5=ac7f6f29367c95259d6ac2ba018895c2CAS | 15264235PubMed |
[106] C. S. Kaddis, S. H. Lomeli, S. Yin, B. Berhane, M. I. Apostol, V. A. Kickhoefer, L. H. Rome, J. A. Loo, J. Am. Soc. Mass Spectrom. 2007, 18, 1206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntF2ls7w%3D&md5=4f1218b292fb5a029fec67bfefe74be5CAS | 17434746PubMed |
[107] G. C. Roberts, C. W. Smith, Curr. Opin. Chem. Biol. 2002, 6, 375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVektrs%3D&md5=419757315852c9f231d93deb40d0fa33CAS | 12023119PubMed |
[108] J. A. Paulo, V. Kadiyala, P. A. Banks, H. Steen, D. L. Conwell, Yale J. Biol. Med. 2012, 85, 59.
| 1:CAS:528:DC%2BC38XmsF2kurs%3D&md5=6ae0d4de9ae065bb0b4a57321759a85dCAS | 22461744PubMed |
[109] T. E. Angel, U. K. Aryal, S. M. Hengel, E. S. Baker, R. T. Kelly, E. W. Robinson, R. D. Smith, Chem. Soc. Rev. 2012, 41, 3912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ykt7k%3D&md5=f9738ef333d20fad862d125b3f0f10ffCAS | 22498958PubMed |
[110] K. L. Pierce, R. T. Premont, R. J. Lefkowitz, Nat. Rev. Mol. Cell Biol. 2002, 3, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslansr4%3D&md5=57361f6a5e28c0efa1bed527ab81b88bCAS | 12209124PubMed |
[111] N. Das, B. Biswas, R. Khera, Adv. Exp. Med. Biol. 2013, 734, 55.
| Crossref | GoogleScholarGoogle Scholar | 22990695PubMed |
[112] G. McMahon, Oncologist 2000, 5, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFartrw%3D&md5=c1688ae19936850f9a533462e5561ee9CAS | 10804084PubMed |
[113] E. Zwick, J. Bange, A. Ullrich, Endocr. Relat. Cancer 2001, 8, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlCqsL0%3D&md5=edbcbd9de22574ca958efda82b38f7bdCAS | 11566607PubMed |
[114] J. Whitelegge, F. Halgand, P. Souda, V. Zabrouskov, Expert Rev. Proteomics 2006, 3, 585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFGqtro%3D&md5=8ec486f158491efd8a8abab0d211a116CAS | 17181473PubMed |
[115] P. Souda, C. M. Ryan, W. A. Cramer, J. Whitelegge, Methods 2011, 55, 330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WmsrY%3D&md5=d2ee84dd97c5295e039025ad14f6c49aCAS | 21982782PubMed |
[116] V. A. Petyuk, W. J. Qian, M. H. Chin, H. Wang, E. A. Livesay, M. E. Monroe, J. N. Adkins, N. Jaitly, D. J. Anderson, D. G. Camp, D. J. Smith, R. D. Smith, Genome Res. 2007, 17, 328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12iu7g%3D&md5=6a062e94fce8137d638038fd9c58bf31CAS | 17255552PubMed |
[117] W. J. Qian, B. O. Petritis, A. Kaushal, C. C. Finnerty, M. G. Jeschke, M. E. Monroe, R. J. Moore, A. A. Schepmoes, W. Xiao, L. L. Moldawer, R. W. Davis, R. G. Tompkins, D. N. Herndon, D. G. Camp, R. D. Smith, J. Proteome Res. 2010, 9, 4779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVylu74%3D&md5=4340d716035eb403d96f1a831c7f2930CAS | 20698492PubMed |
[118] Y. Zhong, S. J. Hyung, B. T. Ruotolo, Expert Rev. Proteomics 2012, 9, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGmt7w%3D&md5=a18a60a79a3bb080e59403049c149bf1CAS | 22292823PubMed |
[119] A. Sali, R. Glaeser, T. Earnest, W. Baumeister, Nature 2003, 422, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFKgs7k%3D&md5=c8d7ce72d4f15031dc8bfb396dfe0793CAS | 12634795PubMed |
[120] E. Jurneczko, P. E. Barran, Analyst 2011, 136, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajtbrN&md5=b5d47212b44510c7ec015fa5b9922265CAS | 20820495PubMed |
[121] C. A. Scarff, K. Thalassinos, G. R. Hilton, J. H. Scrivens, Rapid Commun. Mass Spectrom. 2008, 22, 3297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtleiu73F&md5=d6dfea04b9ac1e0e459fc52330a634e3CAS | 18816489PubMed |