Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Characterisation of Germanium Monohalides by Solid-State NMR Spectroscopy and First Principles Quantum Chemical Calculations

Margaret A. Hanson A , Andreas Schnepf B , Victor V. Terskikh C , Yining Huang A D and Kim M. Baines A D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.

B Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.

C National Ultrahigh-Field NMR Facility for Solids, Ottawa, Ontario, K1A 0R6, Canada.

D Corresponding authors. Email: kbaines2@uwo.ca; yhuang@uwo.ca

Australian Journal of Chemistry 66(10) 1202-1210 https://doi.org/10.1071/CH13122
Submitted: 17 March 2013  Accepted: 27 May 2013   Published: 28 August 2013

Abstract

Germanium(i) monohalides are useful starting materials to synthesise small, well defined germanium nanoclusters. However, due to the amorphous nature of solid GeBr and GeCl, details of their solid-state structures remain largely unknown. We investigate the arrangement within these novel binary materials using 35Cl, 79Br, and 73Ge solid-state NMR spectroscopy at 21.1 T and first principles quantum chemical calculations in order to suggest a possible model for the structure.


References

[1]  E. J. Henderson, J. G. C. Veinot, Chem. Mater. 2007, 19, 1886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFegtL4%3D&md5=1ee021151417b2b13565a7e9e06241e8CAS |

[2]  A. P. Li, F. Flack, M. G. Lagally, M. F. Chisholm, K. Yoo, Z. Zhang, H. H. Weitering, J. F. Wendelken, Phys. Rev. B 2004, 69, 245310.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. Schnepf, Coord. Chem. Rev. 2006, 250, 2758.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslSjsr8%3D&md5=edcbd3a15920ec45ee302c74509b2316CAS |

[4]  H. Schnöckel, Dalton Trans. 2005, 19, 3131.
         | Crossref | GoogleScholarGoogle Scholar | 16172633PubMed |

[5]  A. Schnepf, Angew. Chem. 2004, 116, 680.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Schnepf, Angew. Chem. Int. Ed. 2004, 43, 664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKrtbY%3D&md5=5d35fc3f8329e7899194554d28d81738CAS |

[7]  J. H. Warner, Nanotechnology 2006, 17, 5613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsl2mtg%3D%3D&md5=a23c93abbb46fc96cb7d922f0babbc3eCAS | 21727332PubMed |

[8]  A. Schnepf, New J. Chem. 2010, 34, 2079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wht7nP&md5=c954ed631e1fca209a6087307bdafa3dCAS |

[9]  M. Weidenbruch, Eur. J. Inorg. Chem. 1999, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVamt7k%3D&md5=54661a0e0f68477aaa224bf9b7ff2b47CAS |

[10]  S. Nagendran, H. W. Roesky, Organometallics 2008, 27, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKlt7s%3D&md5=a707c64f524c0999478be56e2b19cb04CAS |

[11]  Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFajsbg%3D&md5=84bca0fd0c341330639c031ecc7cb1ccCAS | 19630390PubMed |

[12]  A. Schnepf, Phosphorus Sulfur Silicon Relat. Elem. 2004, 179, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVCht7c%3D&md5=3ff856f7a50b1db8c3905aca471f6a15CAS |

[13]  A. Schnepf, R. Koppe, Z. Anorg. Allg. Chem. 2002, 628, 2914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVCmsA%3D%3D&md5=04d11bee3c207f5536a605b9d9cb644cCAS |

[14]  C. Schenk, F. Henke, A. Schnepf, Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsF2mt74%3D&md5=0c048d299ee31214329fc614626688d6CAS |

[15]  K. J. D. MacKenzie, M. E. Smith, in Multinuclear Solid-State NMR of Inorganic Materials (Eds K. J. D. MacKenzie, M. E. Smith) 2002, pp. 1–22 (Pergamon: Kidlington).

[16]  F. Taulelle, “Fundamental Principles of NMR Crystallography”, in NMR Crystallography (Eds R. K. Harris, R. E. Wasylishen, M. J. Duer) 2009, pp. 245–262 (John Wiley & Sons: Chichester).

[17]  Y. Takeuchi, T. Takayama, Annu. Rep. NMR Spectrosc. 2004, 54, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  P. Pykkö, Mol. Phys. 2008, 106, 1965.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  B. J. Greer, V. K. Michaelis, V. V. Terskikh, S. Kroeker, Can. J. Chem. 2011, 89, 1118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCrsbnL&md5=35bfeee1b208d764a42bfcf6611290edCAS |

[20]  R. C. Rouse, D. R. Peacor, B. R. Maxim, Z. Kristallogr. 1977, 145, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXjtVKrsA%3D%3D&md5=3dfd0cd1e82bf89f0e56ff8a0bfa117eCAS |

[21]  K. Nakamoto, Group Frequency Charts. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A. 6th edn, 2009, pp. 288–392 (Wiley: Hoboken, NJ).

[22]  J. Curda, W. Carillo-Cabrera, A. Schmeding, K. Peters, M. Somer, H. G. von Schnering, Z. Anorg. Allg. Chem. 1997, 623, 929.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt12jur4%3D&md5=fd38bc4fe3ddf16d35d8a4e28ce65ea3CAS |

[23]  M. Somer, W. Carrillo-Cabrera, E. M. Peters, K. Peters, H. G. von Schnering, Z. Anorg. Allg. Chem. 1998, 624, 1915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlGqtb4%3D&md5=a38466dcfbf3bf09737af955172567c9CAS |

[24]  V. K. Michaelis, P. M. Aguiar, V. V. Terskikh, S. Kroeker, Chem. Commun. 2009, 4660.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Oitbg%3D&md5=93a18bb5df8db064f75d8d9b85362bfeCAS |

[25]  V. K. Michaelis, S. Kroeker, J. Phys. Chem. C 2010, 114, 21736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSisb3O&md5=145d1146602c6c726a105a7b41faf016CAS |

[26]  J. F. Stebbins, L.-S. Du, S. Kroeker, P. Neuhoff, D. Rice, J. Frye, H. J. Jakobsen, Solid State Nucl. Magn. Reson. 2002, 21, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitV2mtr8%3D&md5=a5932c9601e5dea17457221a201274bfCAS |

[27]  J.-B. d’Espinose de Lacaillerie, C. Fretigny, D. Massiot, J. Magn. Reson. 2008, 192, 244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlCjsLo%3D&md5=fe294aa60c79644f34ce038f40cd029bCAS | 18362082PubMed |

[28]  G. L. Caër, B. Bureau, D. Massiot, J. Phys. Condens. Matter 2010, 22, 065402.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S. Sen, Z. Gan, J. Non-Cryst. Solids 2010, 356, 1519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlymtrs%3D&md5=e78a3997d07cf2799f19e8753c327406CAS |

[30]  D. L. Bryce, G. D. Sward, Magn. Reson. Chem. 2006, 44, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlKlsbY%3D&md5=665c3ba28c5fe7910dbb75547456e582CAS | 16425199PubMed |

[31]  C. M. Widdifield, R. P. Chapman, D. L. Bryce, Annu. Rep. NMR Spectrosc. 2009, 66, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjs7nE&md5=573ebc1c0d129a770732ce2e240478eaCAS |

[32]  R. P. Chapman, C. M. Widdifield, D. L. Bryce, Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlaiu7c%3D&md5=3962c88fb8e0f7c56d58c95d47c17883CAS |

[33]  D. L. Bryce, E. B. Bultz, Chemistry 2007, 13, 4786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1SitbY%3D&md5=42c93d6343bdd9f72375b97553b76aceCAS | 17385204PubMed |

[34]  P. A. Rupar, V. N. Staroverov, K. M. Baines, Science 2008, 322, 1360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVagt7vO&md5=07677386ef25a25f8b2f653cf11cbc07CAS | 19039131PubMed |

[35]  P. A. Rupar, R. Bandyopadhyay, B. F. T. Cooper, M. R. Stinchcombe, P. J. Ragogna, C. L. B. Macdonald, K. M. Baines, Angew. Chem. Int. Ed. 2009, 48, 5155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVens7g%3D&md5=338694ecb8a1e709ced0f18d0c5e9bb2CAS |

[36]  F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster, W. Zhang, Angew. Chem. Int. Ed. 2009, 48, 5152.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVensrg%3D&md5=9149ad475f92410b51e93bb1c3d4a4b9CAS |

[37]  W. Levason, G. Reid, W. Zhang, Coord. Chem. Rev. 2011, 255, 1319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKkt7w%3D&md5=55e36713b936d529d9b8a461cfbc555fCAS |

[38]  A. Cuisset, F. Hindle, J. Laureyns, E. Bychkov, J. Raman Spectrosc. 2010, 41, 1050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyqt77O&md5=f9b3395e0d86da9b0ed5fab53d2e2154CAS |

[39]  M. Grisolía, L. Rincón, R. Almeida, J. Mol. Struct. THEOCHEM 2006, 769, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  H. A. Kassim, I. A. Jalil, N. Yusof, V. R. Devi, K. N. Shrivastava, J. Non-Cryst. Solids 2007, 353, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVGn&md5=099351f0766042da679df83f8b9e2c7dCAS |

[41]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09. Revision A1 ed. (Gaussian Inc.: Wallingford, CT) 2009.

[42]  M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Matter 2002, 14, 2717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGrs7c%3D&md5=0906d5f45b29a682e187698659b09f74CAS |

[43]  J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
         | Crossref | GoogleScholarGoogle Scholar | 14611541PubMed |

[44]  M. A. Hanson, A. Sutrisno, V. V. Terskikh, K. M. Baines, Y. Huang, Chemistry 2012, 18, 13770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVaqtLvP&md5=1a915727d55e14cbca7f42ec8bd464b4CAS | 23023927PubMed |

[45]  R. P. Chapman, D. L. Bryce, Phys. Chem. Chem. Phys. 2009, 11, 6987.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVejsrY%3D&md5=3548351957649e7fde9b0bd329a17af4CAS | 19652833PubMed |

[46]  A. Sutrisno, M. A. Hanson, P. A. Rupar, V. V. Terskikh, K. M. Baines, Y. Huang, Chem. Commun. 2010, 46, 2817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1CisLw%3D&md5=90bf0cc4ad325d4ca8fc468f52fa9723CAS |

[47]  T. Shimizu, Theoretical Investigation of the Acetylene Analogues of Group 14 Elements E2X2 (E = Si–Pb, X = F–I) 2010, Ph.D. Dissertation, Philipps-Universität Marburg, Marburg, Germany.

[48]  D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 2002, 40, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1ajuw%3D%3D&md5=2e64fba7daa145b992e4698a46442ae9CAS |

[49]  S. Adiga, D. Aebi, D. L. Bryce, Can. J. Chem. 2007, 85, 496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVakt7%2FP&md5=cdf665f7c6b1052534e1a546963115d2CAS |