Stable Molecular Complex of Squaric Acid with 2-(Quinuclidinium)propionate
Zofia Dega-Szafran A B , Andrzej Katrusiak A and Miroslaw Szafran AA Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
B Corresponding author. Email: degasz@amu.edu.pl
Australian Journal of Chemistry 66(7) 836-842 https://doi.org/10.1071/CH13121
Submitted: 15 March 2013 Accepted: 17 April 2013 Published: 17 May 2013
Abstract
Squaric acid (3,4-dihydroxy-3-cyclobuten-1,2-dione, H2SQ) forms a complex with 2-(quinuclidinium)propionate (QNPr). In crystals, the molecules of H2SQ and zwitterions of QNPr are bridged by two strong non-equivalent O–H⋯O hydrogen bonds of 2.476(2) and 2.482(1) Å. The complex is investigated by X-ray diffraction, FTIR, and NMR techniques, and the results are supported by density functional theory calculations. The solid-state aggregation is consistent with the NMR results, recorded for an aqueous solution, and is also reproduced for the structure optimized at the B3LYP/6-311++G(d,p) level of theory. The calculated IR frequencies for the optimized structure have been used for the assignment of the experimental FTIR spectrum, where the broad absorption at ~2400 cm–1 corresponds to the short asymmetric OH⋯O bonds.
References
[1] S. Horiuchi, R. Kumai, Y. Tokura, Chem. Commun. 2007, 2321.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVymu7Y%3D&md5=cc7d65c37384508f464fd0a399d8a785CAS |
[2] (a) G. Busch, P. Scherrer, Naturwissenschaften 1935, 23, 737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA28XntFOi&md5=a0a1baa80cb87848f53bbe225ef2f834CAS |
(b) J. C. Slater, J. Chem. Phys. 1941, 9, 16.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Cai, A. Katrusiak, Dalton Trans. 2013, 42, 863.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) M. Szafranski, A. Katrusiak, G. McIntyre, Phys. Rev. Lett. 2002, 89, 215507-1.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Szafranski, A. Katrusiak, Phys. Rev. Lett. 2012, 109, 169602-1.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Katrusiak, M. Szafranski, Phys. Rev. Lett. 1999, 82, 576.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) S. Cohen, J. R. Lacher, J. D. Park, J. Am. Chem. Soc. 1959, 81, 3480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXhvVWn&md5=ce0a8e1a26417c5dc4529d01f286c65aCAS |
(b) D. J. MacDonald, J. Org. Chem. 1968, 33, 4559.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. T. Ireland, H. F. Walton, J. Phys. Chem. 1967, 71, 751.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) G. Gilli, V. Bertolasi, P. Gilli, V. Ferretti, Acta Crystallogr. 2001, B57, 859.
| 1:CAS:528:DC%2BD3MXos1Cju7k%3D&md5=2d5e4da62ef2f0116c84c492478dc38eCAS |
(b) G. Gilli, P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory 2009 (Oxford University Press: Oxford).
[6] The Cambridge Crystallographic Database Centre. Available from: http://www.codc.cam.ac.uk/
[7] X. Domingo, in Amphoteric Surfactants (Ed. E. G. Lomax) 1996, Vol. 59, pp. 75–190 (Marcel Dekker Inc.: New York, NY).
[8] Z. Dega-Szafran, G. Dutkiewicz, Z. Kosturkiewicz, M. Szafran, J. Mol. Struct. 2012, 1015, 86.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFWmsbo%3D&md5=6608b087ea5831c9a394cf6996706e0eCAS |
[9] Z. Dega-Szafran, G. Dutkiewicz, Z. Kosturkiewicz, M. Szafran, J. Mol. Struct. 2012, 1007, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CgtL%2FP&md5=795a8d4cbb663a604cfa3a74ae2c4060CAS |
[10] (a) Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2012, 1030, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCnu7vJ&md5=998b1aa811997ee5791aa0acd9f48218CAS |
(b) Z. Dega-Szafran, G. Dutkiewicz, Z. Kosturkiewicz, J. Mol. Struct. 2012, 1029, 28.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Barczyński, Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2012, 1018, 28.
| Crossref | GoogleScholarGoogle Scholar |
[11] P. Barczyński, Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2012, 1013, 95.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond 1999 (Oxford University Press: Oxford).
[13] A. Budzianowski, A. Katrusiak, M. Szafrański, J. Phys. Chem. B 2008, 112, 16619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2jsb%2FE&md5=b4d95bd4ee8981c936c770130a32d6b0CAS | 19367862PubMed |
[14] (a) Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2010, 971, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFClurY%3D&md5=fe3c9be955537466ff0179ef15d77ba8CAS |
(b) Z. Dega-Szafran, A. Katrusiak, M. Szafran, Pol. J. Chem. 2009, 83, 723.
(c) Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2009, 921, 295.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2010, 967, 80.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2010, 971, 1.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. Bratos, H. Ratajczak, P. Viot, in Hydrogen Bonded Liquids (Eds J. C. Dore, J. Teixeire) 1991, pp. 221–235 (Kluwer Academic Publisher: Dordrecht) and references cited therein.
[16] F. G. Baglin, C. B. Rose, Spectrochim. Acta A 1970, 26, 2293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXjs1Gjsw%3D%3D&md5=a6b04d67869d74bae6b51c42deb19952CAS |
[17] (a) B. Koleva, T. Kolev, R. W. Seidel, T. Tsanev, H. Mayer-Figge, M. Spiteller, W. S. Sheldrick, Spectrochim. Acta A 2008, 71, 695.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Barczyński, Z. Dega-Szafran, A. Katrusiak, M. Szafran, J. Mol. Struct. 2011, 998, 240.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Kolev, R. W. Seidel, B. B. Koleva, H. Mayer-Figge, M. Spiteller, W. S. Sheldrick, J. Mol. Struct. 2009, 931, 45.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. Koleva, R. W. Seidel, T. Kolev, S. Zareva, H. Mayer-Figge, I. M. Oppel, W. S. Sheldrick, J. Mol. Struct. 2009, 921, 163.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. B. Koleva, T. Kolev, R. W. Seidel, H. Mayer-Figge, M. Spiteller, W. S. Sheldrick, J. Phys. Chem. A 2008, 112, 2899.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) W. F. Maddams, M. J. Southon, Spectrochim. Acta A 1992, 38A, 459.
(b) G. Talsky, Derivative Spectrophotometry 1994 (Wiley-VCH: Weinheim, Germany).
[19] Gaussian Inc., Gauss View 3.0 (Gaussian Inc.: Pittsburg, PA).
[20] Z. Dega-Szafran, E. Dulewicz, M. Petryna, J. Mol. Struct. 2003, 651–653, 635.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. B. Lambert, R. G. Keske, R. E. Carhart, A. P. Javanovich, J. Am. Chem. Soc. 1967, 89, 3761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1emu70%3D&md5=4fb9df332b5234dd8bd231a815009d8cCAS |
[22] (a) D. A. Forsyth, A. B. Sebag, J. Am. Chem. Soc. 1997, 119, 9483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFWjur0%3D&md5=4af5baf2f05b33bb47f946c39fdc2d2bCAS |
(b) A. B. Sebag, D. A. Forsyth, M. A. Plante, J. Org. Chem. 2001, 66, 7967.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Ośmiałowski, E. Kolehmainen, R. Gawinecki, Magn. Reson. Chem. 2001, 39, 334.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) Kuma Diffraction, KUMA KM4 CCD Software, version 161 1999 (Kuma Diffraction: Wroclaw, Poland).
(b) Kuma Diffraction, CrysAlis 162 1999 (Kuma Diffraction: Wroclaw, Poland).
[24] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
[25] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01 2010 (Gaussian, Inc.: Wallingford, CT).
[26] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f6cf3fb1eb0aa0bd90e09e70f7fe63aeCAS |
(b) A. D. Becke, J. Chem. Phys. 1997, 107, 8554.
| Crossref | GoogleScholarGoogle Scholar |
[27] C. Lee, W. Yang, G. R. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=5be02d73b432a9ccf155dbb749241880CAS |
[28] W. J. Hehre, L. Random, P. V. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory 1986 (Wiley: New York, NY).
[29] A. Katrusiak, J. Mol. Graph. Model. 2001, 19, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1yhsLg%3D&md5=712b8c4db3c2e69a0d3f8e60f6b8a298CAS | 11449576PubMed |